【題目】已知點與點
在直線
的兩側,給出以下結論:①
;② 當
時,
有最小值,無最大值;③
;④ 當
且
時,
的取值范圍是
;正確的個數是( )
A.1B.2C.3D.4
科目:高中數學 來源: 題型:
【題目】某手機生產企業為了解消費者對某款手機的認同情況,通過銷售部隨機抽取50名購買該款手機的消費者,并發出問卷調查(滿分50分),該問卷只有20份給予回復,這20份的評分如下:
男 | 47,36,28,48,48,44,50,46,50,37,35,49 |
女 | 38,37,50,36,38,45,29,39 |
(1)完成下面的莖葉圖,并求12名男消費者評分的中位數與8名女消費者評分的眾數及平均值;
男 | 女 | |
2 | ||
3 | ||
4 | ||
5 |
滿意 | 不滿意 | 合計 | |
男 | |||
女 | |||
合計 |
(2)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯表,并判斷是否有95%的把握認為消費者對該款手機的“滿意度”與性別有關;
(3)若從回復的20名消費者中按性別用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人作進一步調查,求至少有1名女性消費者被抽到的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
,部分對應值如下表.
x | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
的導函數
的圖象如圖所示:下列關于
的命題:
函數
是周期函數;
函數
在
是減函數;
如果當
時,
的最大值是2,那么t的最大值為4;
函數
的零點個數可能為0、1、2、3、4個.
其中正確命題的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】暑假期間,某旅行社為吸引游客去某風景區旅游,推出如下收費標準:若旅行團人數不超過30,則每位游客需交費用600元;若旅行團人數超過30,則游客每多1人,每人交費額減少10元,直到達到70人為止.
(1)寫出旅行團每人需交費用(單位:元)與旅行團人數
之間的函數關系式;
(2)旅行團人數為多少時,旅行社可以從該旅行團獲得最大收入?最大收入是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓心C在直線上的圓過兩點
,
.
(1)求圓C的方程;
(2)若直線與圓C相交于A,B兩點,①當
時,求AB的方程;②在y軸上是否存在定點M,使
,若存在,求出M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一家公司生產某種品牌服裝的年固定成本為10萬元,每生產1千件需另投入2.7萬元.設該公司一年內共生產該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且
.
(1)寫出年利潤W(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲得利潤最大?(注:年利潤=年銷售收入﹣年總成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的“特征三角形”.如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請說明理由;
(2)寫出與橢圓相似且焦點在
軸上、短半軸長為
的橢圓
的標準方程;若在橢圓
上存在兩點
、
關于直線
對稱,求實數
的取值范圍;
(3)如圖:直線與兩個“相似橢圓”
和
分別交于點
和點
,試在橢圓
和橢圓
上分別作出點
和點
(非橢圓頂點),使
和
組成以
為相似比的兩個相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐的頂點為,底面圓心為
,母線長為
,
,
、
是底面半徑,且:
,
為線段
的中點,
為線段
的中點,如圖所示:
(1)求圓錐的表面積;
(2)求異面直線和
所成的角的大小,并求
、
兩點在圓錐側面上的最短距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com