【題目】已知函數f(x)=ax2﹣x+a,a∈R,
(1)當a=2時,解不等式f(x)>3;
(2)若函數f(x)有最大值﹣2,求實數a的值.
【答案】
(1)解:當a=2時,f(x)=ax2﹣x+a,
由f(x)>3得2x2﹣x+2>3
解得 或x>1
故不等式的解集為 (﹣∞, ∪(1,+∞)
(2)解:二次函數有最大值,必須a<0
由 得4a2+8a﹣1=0,
解得
由于a<0,故實數
【解析】(1)代入a值,解二次不等式即可;(2)根據二次函數的性質直接求解即可.
【考點精析】認真審題,首先需要了解函數的最值及其幾何意義(利用二次函數的性質(配方法)求函數的最大(。┲担焕脠D象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲),還要掌握二次函數的性質(當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】求滿足下列各條件的橢圓的標準方程.
(1)長軸長是短軸長的2倍且經過點A(2,0);
(2)短軸一個端點與兩焦點組成一個正三角形,且焦點到同側頂點的距離為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實數a和b的值;
(Ⅱ)討論函數f(x)的單調性;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F,G分別為EB和AB的中點.
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點,E,F,G分別是BC,CD和SC的中點.求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2 ,E是PB上任意一點.
(1)求證:AC⊥DE;
(2)已知二面角A﹣PB﹣D的余弦值為 ,若E為PB的中點,求EC與平面PAB所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com