精英家教網 > 高中數學 > 題目詳情

設函數f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)圖象的一條對稱軸是直線
(I)求φ,并指出y=f(x)由y=sin2x作怎樣變換所得.
(II)求函數y=f(x)的單調增區間;
(III)畫出函數y=f(x)在區間[0,π]上的圖象.

(1)   右移個單位 (2)  (3)略

解析試題分析:(1)因為函數f(x)=sin(2x+φ)在對稱軸時有最大或最小值,據此就可得到含∅的等式,求出∅值.因為x=是函數y=f(x)的圖象的對稱軸,所以sin(2×+ϕ)=±1,即+ϕ=kπ+,k∈Z.因為-π<φ<0,所以ϕ=-
(2)借助基本正弦函數的單調性來解,因為y=sinx在區間[2kπ- ,2kπ+ ],k∈Z上為增函數,所以只需2x-∈[2kπ- ,2kπ+ ],k∈Z,在解出x的范圍即可.
(3)利用五點法作圖,令x分別取0,,,π,求出相應的y值,就可得到函數在區間[0,π]上的點的坐標,再把坐標表示到直角坐標系,用平滑的曲線連接即可得到所求圖象。

考點:三角函數的性質
點評:本小題主要考查根據三角函數的性質求解析式,以及單調區間,三角函數圖象的畫法,考查學生的推理和運算能力

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,,(
(1)當 時,求的最大值;
(2)若對任意的,總存在,使成立,求實數的取值范圍;
(3)問取何值時,方程上有兩解?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數其中,
(I)若的值;
(Ⅱ)在(I)的條件下,若函數的圖像的相鄰兩條對稱軸之間的距離等于,求函數的解析式;并求最小正實數,使得函數的圖像象左平移個單位所對應的函數是偶函數。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,,,且以為最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

中,已知,
(1)求的值;
(2)若的面積為,,求的長。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知向量,函數·
(1)求函數的最小正周期T及單調減區間
(2)已知分別是△ABC內角A,B,C的對邊,其中A為銳角,
,求A,b和△ABC的面積S

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)已知,且,求的值;
(2)求函數的單調遞增區間;
(3)若對任意的x∈,不等式恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)求函數的最小正周期;
(2)求函數的單調遞增區間;
(3)求函數的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)已知函數一個周期的圖像如圖所示。

(1)求函數的表達式;
(2)若,且的一個內角,求的值。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视