【題目】已知橢圓的焦點為
,
,離心率為
,點P為橢圓C上一動點,且
的面積最大值為
,O為坐標原點.
(1)求橢圓C的方程;
(2)設點,
為橢圓C上的兩個動點,當
為多少時,點O到直線MN的距離為定值.
科目:高中數學 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點,
為該橢圓的一條垂直于
軸的動弦,直線
與
軸交于點
,直線
與直線
的交點為
.
(1)證明:點恒在橢圓
上.
(2)設直線與橢圓
只有一個公共點
,直線
與直線
相交于點
,在平面內是否存在定點
,使得
恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發展,轎車已成為人們上班代步的一種重要工具.現將某人三年以來每周開車從家到公司的時間之和統計如圖所示.
(1)求此人這三年以來每周開車從家到公司的時間之和在(時)內的頻率;
(2)求此人這三年以來每周開車從家到公司的時間之和的平均數(每組取該組的中間值作代表);
(3)以頻率估計概率,記此人在接下來的四周內每周開車從家到公司的時間之和在(時)內的周數為
,求
的分布列以及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
,
為自然對數的底數. 設
是
的導函數.
(Ⅰ)若時,函數
在
處的切線經過點
,求
的值;
(Ⅱ)求函數在區間
上的單調區間;
(Ⅲ)若,函數
在區間
內有零點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
(
為參數),以
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設為曲線
上的動點,求點
到
上點的距離的最小值,并求此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率
,且直線
與橢圓
有且只有一個公共點
.
(1)求橢圓的標準方程;
(2)設直線與
軸交于點
,過點
的直線
與橢圓
交于不同的兩點
,若
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓
:
的左右焦點分別為
,
,橢圓右頂點為
,點
在圓
:
上.
(1)求橢圓的標準方程;
(2)點在橢圓
上,且位于第四象限,點
在圓
上,且位于第一象限,已知
,求直線
的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com