精英家教網 > 高中數學 > 題目詳情
函數y=3x-x3的遞增區間為
[-1,1]
[-1,1]
分析:先求函數導數,令導數大于等于0,解得x的范圍就是函數的單調增區間.
解答:解:對函數y=3x-x3求導,得,y′=3-3x2,
令y′≥0,即3-3x2≥0,解得,-1≤x≤1
∴函數y=3x-x3的遞增區間為[-1,1]
故答案為:[-1,1].
點評:本題主要考查了導函數的正負與原函數的單調性之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數y=3x-x3的圖象大致是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=3x-x3的單調遞減區間是
(-∞,-1)和(1,+∞)
(-∞,-1)和(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=3x-x3的單調遞增區間是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=3x-x3的遞增區間是( 。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视