【題目】如圖在棱長均為2的正四棱錐P﹣ABCD中,點E為PC中點,則下列命題正確的是( )
A.BE平行面PAD,且直線BE到面PAD距離為
B.BE平行面PAD,且直線BE到面PAD距離為
C.BE不平行面PAD,且BE與平面PAD所成角大于
D.BE不平行面PAD,且BE與面PAD所成角小于
【答案】D
【解析】解:連接AC,BD,交點為O,以O為坐標原點, OC,OD,OP方向分別x,y,z軸正方向建立空間坐標系,
由正四棱錐P﹣ABCD的棱長均為2,點E為PC的中點,
則O(0,0,0),A(﹣ ,0,0),B(0,﹣
,0),
C( ,0,0),D(0,
,0),
P(0,0, ),E(
,0,
),
則 =(
,
,
),
=(﹣
,0,﹣
),
=(0,
,﹣
),
設 =(x,y,z)是平面PAD的一個法向量,
則 ,
取x=1,得 =(1,﹣1,﹣1),
設BE與平面PAD所成的角為θ,
則sinθ=|cos< ,
>|=|
|=
<
,
故BE與平面PAD不平行,且BE與平面PAD所成的角小于30°.
由此排除選項A,B,C.
故選:D.
連接AC,BD,交點為O,以O為坐標原點,OC,OD,OP方向分別x,y,z軸正方向建立空間坐標系,分別求出直線BE的方向向量與平面PAD的法向量,代入向量夾角公式,求出BE與平面PAD夾角的正弦值,再由正弦函數的單調性,即可得到答案.
科目:高中數學 來源: 題型:
【題目】已知函數是定義在R上的奇函數,當
時,
.
(Ⅰ)求函數在R上的解析式;
(Ⅱ)若,函數
,是否存在實數m使得
的最小值為
,若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種新產品投放市場一段時間后,經過調研獲得了時間(天數)與銷售單價
(元)的一組數據,且做了一定的數據處理(如表),并作出了散點圖(如圖)
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作價格
關于時間
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若該產品的日銷售量(件)與時間
的函數關系為
(
),求該產品投放市場第幾天的銷售額最高?最高為多少元?(結果保留整數)
附:對于一組數據,
,
,
,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校舉辦的集體活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得1分、2分、3分的獎勵,游戲還規定,當選手闖過一關后,可以選擇得到相應的分數,結束游戲;也可以選擇繼續闖下一關,若有任何一關沒有闖關成功,則全部分數都歸零,游戲結束。設選手甲第一關、第二關、第三關的概率分別為,
,
,選手選擇繼續闖關的概率均為
,且各關之間闖關成功互不影響
(I)求選手甲第一關闖關成功且所得分數為零的概率
(II)設該學生所得總分數為X,求X的分布列與數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為圓
上一動點,圓心
關于
軸的對稱點為
,點
分別是線段
上的點,且
.
(1)求點的軌跡方程;
(2)直線與點
的軌跡
只有一個公共點
,且點
在第二象限,過坐標原點
且與
垂直的直線
與圓
相交于
兩點,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面五邊形是軸對稱圖形(如圖1),BC為對稱軸,AD⊥CD,AD=AB=1,
,將此五邊形沿BC折疊,使平面ABCD⊥平面BCEF,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(1)證明:AF∥平面DEC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
.
Ⅰ
若函數
在
和
上單調性相反,求
的解析式;
Ⅱ
若
,不等式
在
上恒成立,求a的取值范圍;
Ⅲ
已知
,若函數
在區間
內有且只有一個零點,試確定實數a的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】非空數集A如果滿足:①0A;②若對x∈A,有 ∈A,則稱A是“互倒集”.給出以下數集: ①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y=
}.
其中“互倒集”的個數是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com