【題目】若函數 ,
.
(Ⅰ)求 的單調區間和極值;
(Ⅱ)證明:若 存在零點,則
在區間
上僅有一個零點.
【答案】解:(Ⅰ)由 ,
得
.
由 解得
.
與
在區間
上的情況如下:
所以, 的單調遞減區間是
,單調遞增區間是
;
在
處取得極小值
.
(Ⅱ)由(Ⅰ)知, 在區間
上的最小值為
.
因為 存在零點,所以
,從而
.
當 時,
在區間
上單調遞減,且
,
所以 是
在區間
上的唯一零點.
當 時,
在區間
上單調遞減,且
,
,
所以 在區間
上僅有一個零點.
綜上可知,若 存在零點,則
在區間
上僅有一個零點
【解析】(1)根據題目中所給的條件的特點,利用原函數的導函數f'(x)與0的大小關系,求得函數的單調區間并能求出極值;
(2)利用極值求出最值,再利用最值討論存在零點的情況.導數和函數的單調性的關系:
(i)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數,f′(x)>0的解集與定義域的交集的對應區間為增區間;
(II)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數,f′(x)<0的解集與定義域的交集的對應區間為減區間.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的極值與導數,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系 中,曲線
的參數方程為
(
為參數),在以
為極點,
軸的正半軸為極軸的極坐標系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線 ,
的直角坐標方程;
(2)設 為曲線
上的點,
為曲線
上的點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是偶函數,當x>0時,f(x)單調遞減,設a=-21.2 , ,c=2log52,則f(a),f(b),f(c)的大小關系為( )
A.f(c)<f(b)<f(a)
B.f(c)<f(a)<f(b)
C.f(c)>f(b)>f(a)
D.f(c)>f(a)>f(b)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在吸煙與患肺癌這兩個分類變量的獨立性檢驗的計算中,下列說法正確的是( )
A.若 的觀測值為
,在犯錯誤的概率不超過
的前提下認為吸煙與患肺癌有關系,那么在100個吸煙的人中必有99人患有肺癌.
B.由獨立性檢驗可知,在犯錯誤的概率不超過 的前提下認為吸煙與患肺癌有關系時,我們說某人吸煙,那么他有
的可能患有肺癌.
C.若從統計量中求出在犯錯誤的概率不超過 的前提下認為吸煙與患肺癌有關系,是指有
的可能性使得判斷出現錯誤.
D.以上三種說法都不正確.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1 , x2 , 則e
e
的最大值為( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= 的圖象與函數g(x)=log2(x+a)(a∈R)的圖象恰有一個交點,則實數a的取值范圍是( )
A.a>1
B.a≤﹣
C.a≥1或a<﹣
D.a>1或a≤﹣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com