【題目】隨著手機的發展,“微信”逐漸成為人們交流的一種形式.某機構對“使用微信交流”的態度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信交流”贊成人數如下表.
年齡 (單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統計數據完成下面2×2列聯表,并判斷是否有99%的把握認為“使用微信交流”的態度與人的年齡有關;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(2)若從年齡在[55,65)的被調查人中隨機選取2人進行追蹤調查,求2人中至少有1人不贊成“使用微信交流”的概率.
參考數據:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=,其中n=a+b+c+d.
【答案】(1)見解析 (2)
【解析】試題分析:
(1)結合所給的數據繪制列聯表,據此計算可得K2=≈9.98>6.635.則有99%的把握認為“使用微信交流”的態度與人的年齡有關.
(2)設年齡在[55,65)中不贊成“使用微信交流”的人為A,B,C,贊成“使用微信交流”的人為a,b,據此列出所有可能的事件,結合古典概型公式可得2人中至少有1人不贊成“使用微信交流”的概率為P=.
試題解析:
(1)2×2列聯表如下:
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
贊成 | 10 | 27 | 37 |
不贊成 | 10 | 3 | 13 |
合計 | 20 | 30 | 50 |
K2=≈9.98>6.635.
所以有99%的把握認為“使用微信交流”的態度與人的年齡有關.
(2)設年齡在[55,65)中不贊成“使用微信交流”的人為A,B,C,贊成“使用微信交流”的人為a,b,
則從5人中隨機選取2人有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10種結果,其中2人中至少有1人不贊成“使用微信交流”的有AB,AC,Aa,Ab,BC,Ba,Bb、Ca、Cb,共9種結果,所以2人中至少有1人不贊成“使用微信交流”的概率為P=.
科目:高中數學 來源: 題型:
【題目】惠州市某商店銷售某海鮮,經理統計了春節前后50天該海鮮的日需求量(
,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價處理,削價處理的海鮮每公斤虧損10元;若供不應求,可從其它商店調撥,調撥的海鮮銷售1公斤可獲利30元.假設商店該海鮮每天的進貨量為14公斤,商店銷售該海鮮的日利潤為
元.
(1)求商店日利潤關于日需求量
的函數表達式.
(2)根據頻率分布直方圖,
①估計這50天此商店該海鮮日需求量的平均數.
②假設用事件發生的頻率估計概率,請估計日利潤不少于620元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,上頂點為
,直線
的斜率為
,且原點到直線
的距離為
.
(1)求橢圓的標準方程;
(2)若不經過點的直線
與橢圓
交于
兩點,且與圓
相切.試探究
的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態文明發展理念已經深入人心,這將推動新能源汽車產業的迅速發展,下表是近幾年我國某地區新能源乘用車的年銷售量與年份的統計表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬臺) | 8 | 10 | 13 | 25 | 24 |
某機構調查了該地區30位購車車主的性別與購車種類情況,得到的部分數據如下表所示:
購置傳統燃油車 | 購置新能源車 | 總計 | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計 | 30 |
(1)求新能源乘用車的銷量關于年份
的線性相關系數
,并判斷
與
是否線性相關;
(2)請將上述列聯表補充完整,并判斷是否有
的把握認為購車車主是否購置新能源乘用車與性別有關;
參考公式:,
,其中
.
,若
,則可判斷
與
線性相關.
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區2020年清明節前后3天每天下雨的概率為60%,通過模擬實驗的方法來計算該地區這3天中恰好有2天下雨的概率:用隨機數(
,且
)表示是否下雨:當
時表示該地區下雨,當
時,表示該地區不下雨,從隨機數表中隨機取得20組數如下
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根據上述數表求出該地區清明節前后3天中恰好有2天下雨的概率;
(2)從2011年開始到2019年該地區清明節當天降雨量(單位:)如下表:(其中降雨量為0表示沒有下雨).
時間 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
經研究表明:從2011年開始至2020年, 該地區清明節有降雨的年份的降雨量與年份
成線性回歸,求回歸直線
,并計算如果該地區2020年(
)清明節有降雨的話,降雨量為多少?(精確到0.01)
參考公式:.
參考數據:,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了預測下月產品銷售情況,找出了近7個月的產品銷售量(單位:萬件)的統計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量 |
但其中數據污損不清,經查證,
,
.
(1)請用相關系數說明銷售量與月份代碼
有很強的線性相關關系;
(2)求關于
的回歸方程(系數精確到0.01);
(3)公司經營期間的廣告宣傳費(單位:萬元)(
),每件產品的銷售價為10元,預測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)
參考公式及數據:,相關系數
,當
時認為兩個變量有很強的線性相關關系,回歸方程
中斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線,
相鄰對稱軸之間的距離為
,且函數
在
處取得最大值,則下列命題正確的個數為( )
①當時,m的取值范圍是
;②將
的圖象向左平移
個單位后所對應的函數為偶函數;③函數
的最小正周期為
;④函數
在區間
上有且僅有一個零點.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com