【題目】某校高三年級實驗班與普通班共1000名學生,其中實驗班學生200人,普通班學生800人,現將高三一?荚嚁祵W成績制成如圖所示頻數分布直方圖,按成績依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數成等比數列,第一組與第五組([120, 150))的頻數相等,第二組與第四組([90, 120))的頻數相等。
(1)求第三組的頻率;
(2)已知實驗班學生成績在第五組,
在第四組,剩下的都在第三組,試估計實驗班學生數學成績的平均分;
(3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進行經驗交流,再從這5人中隨機抽取3人在全校師生大會上作經驗報告,求抽取的3人中恰有一個普通班學生的概率。
【答案】(1)0.4;(2)114;(3)
【解析】分析:(1)根據頻率分布直方圖結合等比數列的基本性質可得第三組的頻率;
(2)根據題意明確各組人數,再利用平均數公式可得結果;
(3)利用古典概型概率公式即可得到抽取的3人中恰有一個普通班學生的概率.
詳解:(1)設公比為,則根據題意可得 2(100+100
)+100
2=1000,
整理得2+2
-8=0,解得
,
∴第三組的頻數為 400,頻率為
(2)由題意實驗班學生成績在第五組有 80 人,在第四組有 100 人,在第三組有 20 人,
∴估計平均分
(3)第 5 組中實驗班與普通班的人數之比為 4∶1,∴抽取的 5 人中實驗班有 4 人,普通班有 1 人,
設實驗班的 4 人為 A,B,C,D,普通班 1 人為 a,則 5 人中隨機抽取 3 人的結果有:ABC,ABD,ABa,ACD,ACa,ADa,BCD,BCa,BDa,CDa,共 10 種,其中恰有一個普通班學生有 6 種結果,
科目:高中數學 來源: 題型:
【題目】某奶茶公司對一名員工進行測試以便確定其考評級別.公司準備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為奶茶,另外2杯為
奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選
奶茶,則評為優秀;若2 杯選對1杯
奶茶,則評為良好;否則評為及格.假設此人對
和
兩種奶茶沒有鑒別能力.
(Ⅰ)求此人被評為優秀的概率;(Ⅱ)求此人被評為良好及以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(改編)已知正數數列的前
項和為
,且滿足
;在數列
中,
(1)求數列和
的通項公式;
(2)設,數列
的前
項和為
. 若對任意
,存在實數
,使
恒成立,求
的最小值;
(3)記數列的前
項和為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (
>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
(1)證明函數f ( x )的圖象關于軸對稱;
(2)判斷在
上的單調性,并用定義加以證明;
(3)當x∈[1,2]時函數f (x )的最大值為,求此時a的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知n為正整數,數列{an}滿足an>0,4(n+1)an2﹣nan+12=0,設數列{bn}滿足bn=
(1)求證:數列{ }為等比數列;
(2)若數列{bn}是等差數列,求實數t的值:
(3)若數列{bn}是等差數列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數a1的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com