【題目】已知橢圓的左、右焦點分別為
,
,離心率為
,直線l經過
與橢圓交于P,Q兩點.當
與y軸的交點是線段
的中點時,
.
(1)求橢圓的方程;
(2)設直線l不垂直于x軸,若滿足
,求t的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的中心在原點,焦點F1、F2在坐標軸上,焦距是實軸長的倍且過點(4,﹣
)
(1)求雙曲線方程;
(2)若點M(3,m)在雙曲線上,求證:點M在以F1F2為直徑的圓上;
(3)在(2)條件下,若M F2交雙曲線另一點N,求△F1MN的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】螞蟻森林是支付寶客戶端為首期“碳賬戶”設計的一款公益行動:用戶通過步行、地鐵出行、在線繳納水電煤氣費、網絡掛號、網絡購票等行為就會減少相應的碳排放量,可以用來在支付寶里養一棵虛擬的樹.這棵樹長大后,公益組織、環保企業等螞蟻生態伙伴們可以在現實沙漠化地區(阿拉善、通遼、庫布齊等)種下一棵實體的樹目前通遼地區對部分基地樟子松幼苗的培育技術進行了改進,為了了解改進后的效果,現從改進前后的樹苗培育基地各抽取了株產品作為樣本,檢測其同樣生長周期的高度(單位:
),若高度不低于
才適合移植,否則繼續等待生長圖1是改進前的樣本的頻率分布直方圖,表2是改進后的樣本頻率分布表.
圖1
表2技術改進后樣本的頻率分布表
高度 | 頻數 |
(1)根據圖1和表2提供的信息,試從移植率的角度對培育技術改進前后的優劣進行比較;
(2)估計培育技術未改進的基地樹苗高度的平均數;
(3)在市場中,規定高度在內的為三等苗,
內的為二等苗,
內的為一等苗.現從表2高度不低于
的樹苗樣本中采用分層抽樣的方法抽取
株,再從這
株幼苗中隨機抽取
株,求這
株中一、二、三等苗都有的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖(1)為東方體育中心,其設計方案側面的外輪廓線如圖(2)所示;曲線是以點
為圓心的圓的一部分,其中
,曲線
是拋物線
的一部分;
且
恰好等于圓
的半徑,
與圓相切且
.
(1)若要求米,
米,求
與
的值;
(2)當時,若要求
不超過45米,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
的參數方程為
(t為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到距離的最大值及該點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的兩倍,焦距為
.
(1)求橢圓的標準方程;
(2)不過原點的直線與橢圓
交于兩點
、
,且直線
、
、
的斜率依次成等比數列,問:直線是否定向的,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,建立平面直角坐標系,
軸在地平面上,
軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發射后的軌跡在方程
表示的曲線上,其中
與發射方向有關.炮彈的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)若規定炮彈的射程不小于6千米,設在此條件下炮彈射出的最大高度為,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學隨機抽取部分高一學生調査其每日自主安排學習的時間(單位:分鐘),并將所得數據繪制成如圖所示的頻率分布直方圖,其中自主安排學習時間的范圍是[0,100],樣本數據分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中x的值;
(2)現采用分層抽樣的方式從每日自主安排學習時間不超過40分鐘的學生中隨機抽取6人,若從這6人中隨機抽取2人進行詳細的每日時間安排調查,求抽到的2人每日自主安排學習時間均不低于20分鐘的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com