【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們在 4:30:5:00 之間 到達的時刻是等可能的,約好當其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是( )
A.
B.
C.
D.
【答案】B
【解析】解:因為兩人誰也沒有講好確切的時間, 故樣本點由兩個數(甲乙兩人各自到達的時刻)組成.
以4:30點鐘作為計算時間的起點建立如圖所示的平面直角坐標系,設甲乙各在第x分鐘和第y分鐘到達,則樣本空間為Ω:{(x,y)|0≤x≤30,0≤y≤30},畫成圖為一正方形.
會面的充要條件是|x﹣y|≤20,即事件A={可以會面}所對應的區域是圖中的陰影線部分,
∴由幾何概型公式知所求概率為面積之比,即P(A)= ;
故選B.
【考點精析】關于本題考查的幾何概型,需要了解幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】近年空氣質量逐步霧霾天氣現象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關,在某醫院隨機的對入院50人進行了問卷調查得到了如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 5 | ||
女 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯表補充完整,并判斷是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數為,求
的分布列、數學期望及方差,下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b= ,a+c=ac,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,點P的坐標為(1,1).
(1)過點O作⊙M的切線,求該切線的方程;
(2)若點Q是⊙O上一點,過Q作⊙M的切線,切點分別為E,F,且∠EQF= ,求Q點的坐標;
(3)過點P作兩條相異直線分別與⊙O相交于A,B,且直線PA與直線PB的傾斜角互補,試判斷直線OP與AB是否平行?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱柱 ABCD﹣A1B1C1D1中,底面為平行四邊形,以頂點 A 為端點的三條棱長都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx+ax2+x+1.
(I)a=﹣2時,求函數f(x)的極值點;
(Ⅱ)當a=0時,證明xex≥f(x)在(0,+∞)上恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區公眾對“車輛限行”的態度,隨機抽查了50人,將調查情況進行整理后制成下表:
(Ⅰ)完成被調查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取2人進行追蹤調查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數為,求隨機變量
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com