【題目】已知定義域為的函數
是奇函數.
(1)求a,b的值;
(2)判斷函數的單調性,并用定義證明;
(3)當時,
恒成立,求實數k的取值范圍.
科目:高中數學 來源: 題型:
【題目】【2018衡水金卷(三)】如圖所示,在三棱錐中,平面
平面
,
,
,
,
.
(I)證明: 平面
;
(II)若二面角的平面角的大小為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發現烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,
分別表示烏龜和兔子所行的路程,
為時間,則與故事情節相吻合的是( 。
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,點
在傾斜角為
的直線
上,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的方程為
.
(1)寫出的參數方程及
的直角坐標方程;
(2)設與
相交于
兩點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中中,曲線
的參數方程為
為參數,
). 以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知直線
的極坐標方程為
.
(1)設是曲線
上的一個動點,當
時,求點
到直線
的距離的最大值;
(2)若曲線上所有的點均在直線
的右下方,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線
的焦點F在直線
上。
(Ⅰ)求拋物線C的方程。
(Ⅱ)過點做互相垂直的兩條直線
與曲線C交于A,B兩點,
與曲線C交于E,F兩點,線段AB、EF的中點分別為M、N,求證:直線MN過定點P,并求出定點P的坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元.設該公司的儀器月產量為臺,當月產量不超過400臺時,總收益為
元,當月產量超過400臺時,總收益為
元.(注:總收益=總成本+利潤)
(1)將利潤表示為月產量的函數
;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)求的單調區間;
(2)若圖像上任意一點
處的切線的斜率
,求
的取值范圍;
(3)若對于區間上任意兩個不相等的實數
都有
成立,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com