【題目】【2018衡水金卷(三)】如圖所示,在三棱錐中,平面
平面
,
,
,
,
.
(I)證明: 平面
;
(II)若二面角的平面角的大小為
,求直線
與平面
所成角的正弦值.
【答案】(I)見解析;(II)直線與平面
所成角的正弦值為
.
【解析】【試題分析】(1)用余弦定理求得,故三角形
為直角三角形,即
,根據面面垂直的性質定理可知
平面
,所以
,結合
可得
平面
.(2)過點
作
,垂足為
,連接
.易證得
即為直線
與平面
所成的角.計算的
的長度,兩者相比即得到所求線面角的正弦值為
【試題解析】
(1)在中,因為
,
,
,
所以由余弦定理,可知
,
所以.故
,即有
.
又因為平面平面
,且平面
平面
,
平面
,
所以平面
.又
平面
,所以
.
又因為,
,所以
平面
.
(2)過點作
,垂足為
,連接
.
由(1),知平面
,
平面
,
所以.又
,所以
平面
,
因此即為直線
與平面
所成的角.
又由(1)的證明,可知平面
,
又平面
,
平面
,所以
,
,
故即為二面角
的平面角,即
.
故在中,由
,得
.
在中,
,
且
.
因此在中,得
,
故直線與平面
所成角的正弦值為
.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為直角梯形,
,
,平面
底面
,
為
的中點,
是棱
上的點,
,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若異面直線與
所成角的余弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
①設某大學的女生體重與身高
具有線性相關關系,根據一組樣本數據
,用最小二乘法建立的線性回歸方程為
,則若該大學某女生身高增加
,則其體重約增加
;
②關于的方程
的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點
作圓的動弦
,
為原點,若
,則動點
的軌跡為橢圓;
④已知是橢圓
的左焦點,設動點
在橢圓上,若直線
的斜率大于
,則直線
(
為原點)的斜率的取值范圍是
.
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中華民族是一個傳統文化豐富多彩的民族,各民族有許多優良的傳統習俗,如過大年吃餃子,元宵節吃湯圓,端午節吃粽子,中秋節吃月餅等等,讓人們感受到濃濃的節目味道,某家庭過大年時包有大小和外觀完全相同的肉餡餃子、蛋餡餃子和素餡餃子,一家4口人圍坐在桌旁吃年夜飯,當晚該家庭吃餃子時每盤中混放8個餃子,其中肉餡餃子4個,蛋餡餃子和素餡餃子各2個,若在桌上上一盤餃子大家共同吃,記每個人第1次夾起的餃子中肉餡餃子的個數為,若每個人各上一盤餃子,記4個人中第1次夾起的是肉餡餃子的人數為
,假設每個人都吃餃子,且每人每次都是隨機地從盤中夾起餃子.
(1)求隨機變量的分布列;
(2)若的數學期望分別記為
、
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品生產廠家生產一種產品,每生產這種產品
(百臺),其總成本為
萬元
,其中固定成本為42萬元,且每生產1百臺的生產成本為15萬元
總成本
固定成本
生產成本
銷售收入
萬元
滿足
,假定該產品產銷平衡
即生產的產品都能賣掉
,根據上述條件,完成下列問題:
寫出總利潤函數
的解析式
利潤
銷售收入
總成本
;
要使工廠有盈利,求產量
的范圍;
工廠生產多少臺產品時,可使盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
且
.
(1)求實數的值;
(2)判斷函數在區間
上的單調性,并用函數單調性的定義證明;
(3)求實數的取值范圍,使得關于
的方程
分別為:
①有且僅有一個實數解;②有兩個不同的實數解;③有三個不同的實數解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
,其中
.
(1)若是關于
的不等式
的解,求
的取值范圍;
(2)求函數在
上的最小值;
(3)若對任意的,不等式
恒成立,求
的取值范圍;
(4)當時,令
,試研究函數
的單調性,求
在該區間上的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com