【題目】四棱錐中,
面
,底面
是菱形,且
,
,過點
作直線
,
為直線
上一動點.
(1)求證: ;
(2)當二面角的大小為
時,求
的長;
(3)在(2)的條件下,求三棱錐的體積.
【答案】(1)見解析;(2);(3)
.
【解析】試題分析:
(1)利用三垂線定理結合即可證得
;
(2)首先寫出二面角的平面角,最后利用余弦定理列出方程求解QB的長度即可;
(3)將問題轉化為兩個三棱錐的體積,其中公共的底為△POQ,高的總長度為AC的長,則體積公式為:
試題解析:
(1)由題意知直線在面
上的射影為
,
又菱形中
,由三垂線定理知
.
(2)和
都是以
為底的等腰三角形,設
和
的交點為
,
連接,則
是二面角
的平面角,
由知,二面角
大于
,
所以點與點
在平面
的同側,如圖所示.
則是二面角
的平面角,故
.
在中,
,設
,則
中,
,
在直角梯形中,
,
在中,由余弦定理得
,故
且
,
解得,即
.
(3)由(2)知: ,
,
且面
,∴
.
科目:高中數學 來源: 題型:
【題目】矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四凌錐S﹣ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中點,且SA=AB=BC=2,AD=1.
(1)求證:DM∥平面SAB;
(2)求四棱錐S﹣ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形中,
,
為邊
的中點,將
沿直線
翻轉成
.若
為線段
的中點,則在
翻折過程中:
①是定值;②點
在某個球面上運動;
③存在某個位置,使;④存在某個位置,使
平面
.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:
甲說:“或
作品獲得一等獎”
乙說:“作品獲得一等獎”
丙說:“,
兩項作品未獲得一等獎”
丁說:“作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子原件生產廠生產的10件產品中,有8件一級品,2件二級品,一級品和二級品在外觀上沒有區別.從這10件產品中任意抽檢2件,計算:
(1)2件都是一級品的概率;
(2)至少有一件二級品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}中,an=32,sn=63,
(1)若數列{an}為公差為11的等差數列,求a1;
(2)若數列{an}為以a1=1為首項的等比數列,求數列{am2}的前m項和sm′ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
底面
,底面
是直角梯形,
,
,
,
,點
在
上,且
.
(Ⅰ)已知點在
上,且
,求證:平面
平面
;
(Ⅱ)當二面角的余弦值為多少時,直線
與平面
所成的角為
?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com