【題目】(本小題滿分12分)某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.(Ⅰ)寫出年利潤
(萬元)關于年產量
(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
【答案】(1);(2)100.
【解析】試題分析:(Ⅰ)分兩種情況進行研究,當0<x<80時,投入成本為C(x)=(萬元),根據年利潤=銷售收入﹣成本,列出函數關系式,當x≥80時,投入成本為C(x)=51x+
,根據年利潤=銷售收入﹣成本,列出函數關系式,最后寫成分段函數的形式,從而得到答案;
(Ⅱ)根據年利潤的解析式,分段研究函數的最值,當0<x<80時,利用二次函數求最值,當x≥80時,利用基本不等式求最值,最后比較兩個最值,即可得到答案.
解:(Ⅰ)∵每件商品售價為0.05萬元,
∴x千件商品銷售額為0.05×1000x萬元,
①當0<x<80時,根據年利潤=銷售收入﹣成本,
∴L(x)=(0.05×1000x)﹣﹣10x﹣250=
+40x﹣250;
②當x≥80時,根據年利潤=銷售收入﹣成本,
∴L(x)=(0.05×1000x)﹣51x﹣+1450﹣250=1200﹣(x+
).
綜合①②可得,L(x)=.
(Ⅱ)由(Ⅰ)可知,,
①當0<x<80時,L(x)=+40x﹣250=﹣
,
∴當x=60時,L(x)取得最大值L(60)=950萬元;
②當x≥80時,L(x)=1200﹣(x+)≤1200﹣2
=1200﹣200=1000,
當且僅當x=,即x=100時,L(x)取得最大值L(100)=1000萬元.
綜合①②,由于950<1000,
∴當產量為100千件時,該廠在這一商品中所獲利潤最大,最大利潤為1000萬元.
科目:高中數學 來源: 題型:
【題目】設函數f(x)滿足:
①對任意實數m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②對任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒為0,且當0<x<1時,f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數T,使得對函數g(x)定義域中的任意一個x,均有g(x+T)=g(x),則稱g(x)為以T為周期的周期函數”.試證明:函數f(x)為周期函數,并求出 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,點E是AB的中點,點F是BC的中點,將△AED、△DCF分別沿DE、DF折起,使A、C兩點重合于點A′,連接EF,A′B.
(1)求證:A′D⊥EF;
(2)求二面角A′﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度
(單位:
)滿足關系:
,若不建隔熱層,每年能源消耗費用為8萬元,設
為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及
的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:①y= 是奇函數;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數f(x)=2x﹣x2在R上有3個零點;
④函數y=sin2x的圖象向左平移 個單位,得到函數
的圖象.
其中正確命題的序號是 . (把正確命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過長期觀測得到:在交通繁忙的時段內,某公路汽車的車流量y(千輛/h)與汽車的平均速度v(km/h)之間的函數關系式為 . (I)若要求在該段時間內車流量超過2千輛/h,則汽車在平均速度應在什么范圍內?
(II)在該時段內,當汽車的平均速度v為多少時,車流量最大?最大車流量為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com