【題目】空氣質量指數是反映空氣質量狀況的指數,
指數值越小,表明空氣質量越好,其對應關系如表:
| ||||||
空氣質量 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖是某市10月1日—20日指數變化趨勢:
下列敘述正確的是( )
A.該市10月的前半個月的空氣質量越來越好
B.這20天中的中度污染及以上的天數占
C.這20天中指數值的中位數略高于100
D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量差
科目:高中數學 來源: 題型:
【題目】某公司為了了解年研發資金投人量(單位:億元)對年銷售額
(單位:億元)的影響.對公司近
年的年研發資金投入量
和年銷售額
的數據,進行了對比分析,建立了兩個函數模型:①
,②
,其中
、
、
、
均為常數,
為自然對數的底數.并得到一些統計量的值.令
,
,經計算得如下數據:
(1)請從相關系數的角度,分析哪一個模型擬合程度更好?
(2)(ⅰ)根據(1)的選擇及表中數據,建立關于
的回歸方程;
(ⅱ)若下一年銷售額需達到
億元,預測下一年的研發資金投入量
是多少億元?
附:①相關系數,
回歸直線中公式分別為:
,
;
②參考數據:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,
滿足
(
…).
(1)若,求
的值;
(2)若且
,則數列
中第幾項最?請說明理由;
(3)若(n=1,2,3,…),求證:“數列
為等差數列”的充分必要條件是“數列
為等差數列且
(n=1,2,3,…)”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數
,如果存在區間
,其中
,同時滿足:
①在
內是單調函數:②當定義域為
時,
的值域為
,則稱函數
是區間
上的“保值函數”,區間
稱為“保值函數”.
(1)求證:函數不是定義域
上的“保值函數”;
(2)若函數(
)是區間
上的“保值函數”,求
的取值范圍;
(3)對(2)中函數,若不等式
對
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若存在區間
,使得
,則稱函數
為“可等域函數”,區間
為函數
的一個“可等域區間”.給出下列4個函數:
①;②
; ③
; ④
.
其中存在唯一“可等域區間”的“可等域函數”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018屆安徽省合肥市高三第一次教學質量檢測】一家大型購物商場委托某機構調查該商場的顧客使用移動支付的情況.調查人員從年齡在內的顧客中,隨機抽取了180人,調查結果如表:
(1)為推廣移動支付,商場準備對使用移動支付的顧客贈送1個環保購物袋.若某日該商場預計有12000人購物,試根據上述數據估計,該商場當天應準備多少個環保購物袋?
(2)某機構從被調查的使用移動支付的顧客中,按分層抽樣的方式抽取7人作跟蹤調查,并給其中2人贈送額外禮品,求獲得額外禮品的2人年齡都在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個結論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數方程為
(
為參數).以坐標原點O為極,z軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)求曲線C的普通方程和直線的直角坐標方程;
(Ⅱ)設點.若直線
與曲線C相交于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的兩個焦點為
,
,焦距為
,直線
:
與橢圓
相交于
,
兩點,
為弦
的中點.
(1)求橢圓的標準方程;
(2)若直線:
與橢圓
相交于不同的兩點
,
,
,若
(
為坐標原點),求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com