【題目】已知函數f(x)=x2﹣mlnx在[2,+∞)上單調遞增,則實數m的取值范圍為 .
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點(
,1),離心率為
,直線l:y=k(x+1)與橢圓C相交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)在x軸上是否存在點M,使 +
是與k無關的常數?若存在,求出點M的坐標,并求出此常數;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設向量 =(
sinx,sinx),
=(cosx,sinx),x∈(0,
).
(1)若| |=|
|,求x的值;
(2)設函數f(x)= ,求f(x)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某個體戶計劃經銷A,B兩種商品,據調查統計,當投資額為x(x≥0)萬元時,在經銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投資額為零時收益為零.
(1)求a,b的值;
(2)如果該個體戶準備投入5萬元經銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市調研考試后,某校對甲、乙兩個文科班的數學考試成績進行分析,規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中優秀的人數是30人.
(1)請完成上面的列聯表;
優秀 | 非優秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
參考公式與臨界值表 .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).
(1)求的值; (2)若c=
a,求角C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C經過點A(2,3)、B(4,0),對稱軸為坐標軸,焦點F1、F2在x軸上.
(1)求橢圓C的方程;
(2)求∠F1AF2的角平分線所在的直線l與橢圓C的另一個交點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若p是q的必要不充分條件,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com