【題目】已知數列為等差數列,
,
,數列
的前
項和為
,且有
.
(1)求、
的通項公式;
(2)若,
,求使
成立的
的最小值.
科目:高中數學 來源: 題型:
【題目】近年來,共享單車已經悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統,以了解用戶對車輛狀況和優惠活動的評價.現從評價系統中選出
條較為詳細的評價信息進行統計,車輛狀況的優惠活動評價的
列聯表如下:
對優惠活動好評 | 對優惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優惠活動好評與車輛狀況好評之間有關系?
(2)為了回饋用戶,公司通過向用戶隨機派送騎行券.用戶可以將騎行券用于騎行付費,也可以通過
轉贈給好友.某用戶共獲得了
張騎行券,其中只有
張是一元券.現該用戶從這
張騎行券中隨機選取
張轉贈給好友,求選取的
張中至少有
張是一元券的概率.
參考數據:
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四色猜想是世界三大數學猜想之一,1976年數學家阿佩爾與哈肯證明,稱為四色定理.其內容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數學語言表示為“將平面任意地細分為不相重疊的區域,每一個區域總可以用,
,
,
四個數字之一標記,而不會使相鄰的兩個區域得到相同的數字.”如圖,網格紙上小正方形的邊長為
,粗實線圍城的各區域上分別標有數字
,
,
,
的四色地圖符合四色定理,區域
和區域
標記的數字丟失.若在該四色地圖上隨機取一點,則恰好取在標記為
的區域的概率所有可能值中,最大的是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】建設生態文明,是關系人民福祉,關乎民族未來的長遠大計.某市通宵營業的大型商場,為響應節能減排的號召,在氣溫超過時,才開放中央空調降溫,否則關閉中央空調.如圖是該市夏季一天的氣溫(單位:
)隨時間(
,單位:小時)的大致變化曲線,若該曲線近似的滿足函數
關系.
(1)求函數的表達式;
(2)請根據(1)的結論,判斷該商場的中央空調應在本天內何時開啟?何時關閉?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種新產品投放市場一段時間后,經過調研獲得了時間(天數)與銷售單價
(元)的一組數據,且做了一定的數據處理(如表),并作出了散點圖(如圖)
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作價格
關于時間
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若該產品的日銷售量(件)與時間
的函數關系為
(
),求該產品投放市場第幾天的銷售額最高?最高為多少元?(結果保留整數)
附:對于一組數據,
,
,
,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規劃越來越受到社會的關注.一些高中已經開始嘗試開設學生生涯規劃選修課程,并取得了一定的成果.下表為某高中為了調查學生成績與選修生涯規劃課程的關系,隨機抽取50名學生的統計數據.
成績優秀 | 成績不夠優秀 | 總計 | |
選修生涯規劃課 | 15 | 10 | 25 |
不選修生涯規劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(Ⅰ)根據列聯表運用獨立性檢驗的思想方法能否有的把握認為“學生的成績是否優秀與選修生涯規劃課有關”,并說明理由;
(Ⅱ)如果從全校選修生涯規劃課的學生中隨機地抽取3名學生,求抽到成績不夠優秀的學生人數的分布列和數學期望(將頻率當作概率計算).
參考附表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com