【題目】已知動點到直線
的距離比到點
的距離大
(1)求動點的軌跡
的方程;
(2)為
上兩點,
為坐標原點,
,過
分別作
的兩條切線,相交于點
,求
面積的最小值.
科目:高中數學 來源: 題型:
【題目】2015年8月12日天津發生;分卮蟊ㄊ鹿,造成重大人員和經濟損失.某港口組織消防人員對該港口的公司的集裝箱進行安全抽檢,已知消防安全等級共分為四個等級(一級為優,二級為良,三級為中等,四級為差),該港口消防安全等級的統計結果如下表所示:
現從該港口隨機抽取了家公司,其中消防安全等級為三級的恰有20家.
(Ⅰ)求的值;
(Ⅱ)按消防安全等級利用分層抽樣的方法從這家公司中抽取10家,除去消防安全等級為一級和四級的公司后,再從剩余公司中任意抽取2家,求抽取的這2家公司的消防安全等級都是二級的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構造的次數是( ).(取
,
)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知圓
的參數方程是
(
為參數).以
為極點,
軸的非負半軸為極軸建立極坐標系,直線
的極坐標方程是
,射線
:
與圓
的交點為
、
兩點,
與直線
的交點為
.
(1)求圓的極坐標方程;
(2)求線段的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,側面
⊥底面
,底面
為直角梯形,
//
,
,
,
,
為
的中點.
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求
的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是民航部門統計的某年春節期間:中國民航出入境航線方面TOP10出入境國家和地區的旅客量以及相比上年同期變化幅度的數據統計圖表,根據圖表,下面敘述不正確的是( )
A.東南亞仍是人們出境旅游的首選
B.臺灣和澳門均有超過一成的同比增長
C.越南和美國排在人們出境旅游選擇的前兩位
D.中-韓航線雖依然位列出入境國家和地區第三甲,但旅客量卻較去年出現負增長
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】植物園擬建一個多邊形苗圃,苗圃的一邊緊靠著長度大于30m的圍墻.現有兩種方案:
方案① 多邊形為直角三角形(
),如圖1所示,其中
;
方案② 多邊形為等腰梯形(
),如圖2所示,其中
.
請你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是等差數列,數列
是等比數列,且
,
的前n項和為
.若
對任意的
恒成立.
(1)求數列,
的通項公式;
(2)若數列滿足
問:是否存在正整數
,使得
,若存在求出
的值,若不存在,說明理由;
(3)若存在各項均為正整數公差為的無窮等差數列
,滿足
,且存在正整數
,使得
成等比數列,求
的所有可能的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com