【題目】如圖,四邊形ABCD為平行四邊形,點E在AB上,AE=2EB=2,且DE⊥AB.以DE為折痕把△ADE折起,使點A到達點F的位置,且∠FEB=60°.
(1)求證:平面BFC⊥平面BCDE;
(2)若直線DF與平面BCDE所成角的正切值為,求二面角E﹣DF﹣C的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)首先通過證明平面
證得
.結合余弦定理和勾股定理證得
,由此證得
平面
,進而證得平面
平面
.
(2)建立空間直角坐標系,由直線與平面
所成角的正切值求得正弦值,結合直線
的方向向量和平面
的法向量列方程,解方程求得
的長.由此通過平面
和平面
的法向量,計算出二面角
的余弦值,進而求得其正弦值.
(1)證明:∵DE⊥AB,∴DE⊥EB,DE⊥EF,
∴DE⊥平面BEF,∴DE⊥BF,
∵AE=2EB=2,∴EF=2,EB=1,
∵∠FEB=60°,∴由余弦定理得BF,
∴EF2=EB2+BF2,∴FB⊥EB,
由①②得BF⊥平面BCDE,
∴平面BFC⊥平面BCDE.
(2)解:以B為原點,BA為x軸,在平面ABCD中過點B作AB的垂線為y軸,BF為z軸,建立空間直角坐標系,
設DE=a,則D(1,a,0),F(0,0,),
(﹣1,﹣a,
),
∵直線DF與平面BCDE所成角的正切值為,
∴直線DF與平面BCDE所成角的正弦值為,
平面BCDE的法向量(0,0,1),
∴|cos|
,解得a=2,
∴D(1,2,0),C(﹣2,2,0),∴(0,2,0),
(﹣1,﹣2,
),
設平面EDF的法向量(x,y,z),
則,取z=1,得
(
),
同理得平面DFC的一個法向量(0,
,2),
∴cos,
∴二面角E﹣DF﹣C的正弦值為sin.
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為
(
為參數),以坐標原點為極點,
軸正半軸極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)寫出直線的極坐標方程與曲線
的直角坐標方程;
(2)若點是曲線
上的動點,求
到直線
距離的最小值,并求出此時
點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構造的次數是( ).(取
,
)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學生考試中答對但得不了滿分的原因多為答題不規范,具體表現為:解題結果正確,無明顯推理錯誤,但語言不規范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”.為評估此類解答導致的失分情況,某市教研室做了一項試驗:從某次考試的數學試卷中隨機抽取若干屬于“
類解答”的題目,掃描后由近百名數學老師集體評閱,統計發現,滿分12分的題,閱卷老師所評分數及各分數所占比例大約如下表:
教師評分(滿分12分) | 11 | 10 | 9 |
各分數所占比例 |
某次數學考試試卷評閱采用“雙評+仲裁”的方式,規則如下:兩名老師獨立評分,稱為一評和二評,當兩者所評分數之差的絕對值小于等于1分時,取兩者平均分為該題得分;當兩者所評分數之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數和一、二評中與之接近的分數的平均分為該題得分;當一、二評分數和仲裁分數差值的絕對值相同時,取仲裁分數和前兩評中較高的分數的平均分為該題得分.(假設本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).
(1)本次數學考試中甲同學某題(滿分12分)的解答屬于“類解答”,求甲同學此題得分
的分布列及數學期望
;
(2)本次數學考試有6個解答題,每題滿分均為12分,同學乙6個題的解答均為“類解答”,記該同學6個題中得分為
的題目個數為
,
,
,計算事件“
”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖數據如圖.根據莖葉圖,下列描述正確的是( )
A.甲種樹苗的中位數大于乙種樹苗的中位數,且甲種樹苗比乙種樹苗長得整齊
B.甲種樹苗的中位數大于乙種樹苗的中位數,但乙種樹苗比甲種樹苗長得整齊
C.乙種樹苗的中位數大于甲種樹苗的中位數,且乙種樹苗比甲種樹苗長得整齊
D.乙種樹苗的中位數大于甲種樹苗的中位數,但甲種樹苗比乙種樹苗長得整齊
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國慶節來臨,某公園為了豐富廣大人民群眾的業余生活,特地以“我們都是中國人”為主題舉行猜謎語競賽.現有兩類謎語:一類叫事物謎,就是我們常說的謎語;另一類叫文義謎,也就是我們常說的燈謎,共8道題,其中事物謎4道題,文義謎4道題,孫同學從中任取3道題解答.
(1)求孫同學至少取到2道文義謎題的概率;
(2)如果孫同學答對每道事物謎題的概率都是,答對每道文義謎題的概率都是
,且各題答對與否相互獨立,已知孫同學恰好選中2道事物謎題,1道文義謎題,用
表示孫同學答對題的個數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發展和人民生活水平的提高,以及城市垃圾分類收集的實施和推廣,我國居民生活垃圾的平均熱值逐年.上升,垃圾焚燒發電的噸上網電量(單位:千瓦時/噸)顯著增加.下表為某垃圾焚燒發電廠最近五個月的生產數據.
月份代碼 | |||||
噸上網電量 | |||||
若從該發電廠這五個月的生產數據(噸上網電量)中任選兩個,求其中至少有一個生產數據超過
的概率;
通過散點圖(如圖)可以發現,變量
與
之間的關系可以用函數
(其中
為自然對數的底數)來擬合,求常數
,
的值.
參考公式:對于一組數據,
,
,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的零點構成一個公差為
的等差數列,把函數
的圖象沿
軸向右平移
個單位,得到函數
的圖象.關于函數
,下列說法正確的是( )
A. 在上是增函數B. 其圖象關于直線
對稱
C. 函數是偶函數D. 在區間
上的值域為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,原點為
,橢圓
的動弦
過焦點
且不垂直于坐標軸,弦
的中點為
,過
且垂直于線段
的直線交射線
于點
.
(1)證明:點在定直線上;
(2)當最大時,求
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com