【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,btanB+btanA=﹣2ctanB,且a=8,△ABC的面積為 ,則b+c的值為 .
【答案】
【解析】解:∵在△ABC中btanB+btanA=﹣2ctanB, ∴由正弦定理可得sinB(tanA+tanB)=﹣2sinCtanB,
∴sinB(tanA+tanB)=﹣2sinC ,
∴cosB(tanA+tanB)=﹣2sinC,
∴cosB( +
)=﹣2sinC,
∴cosB =﹣2sinC,
∴cosB =
=﹣2sinC,
解得cosA=﹣ ,A=
;
∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2﹣bc,①
∵△ABC的面積為 =
bcsinA=
bc,可得:bc=16,②
∴聯立①②可得:b+c=4 .
所以答案是:4 .
【考點精析】關于本題考查的正弦定理的定義,需要了解正弦定理:才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】如圖,某市在海島A上建了一水產養殖中心.在海岸線l上有相距70公里的B、C兩個小鎮,并且AB=30公里,AC=80公里,已知B鎮在養殖中心工作的員工有3百人,C鎮在養殖中心工作的員工有5百人.現欲在BC之間建一個碼頭D,運送來自兩鎮的員工到養殖中心工作,又知水路運輸與陸路運輸每百人每公里運輸成本之比為1:2.
(1)求sin∠ABC的大小;
(2)設∠ADB=θ,試確定θ的大小,使得運輸總成本最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司過去五個月的廣告費支出與銷售額
(單位:萬元)之間有下列對應數據:
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數據丟失.已知
對
呈線性相關關系,且回歸方程為
,則下列說法:①銷售額
與廣告費支出
正相關;②丟失的數據(表中
處)為30;③該公司廣告費支出每增加1萬元,銷售額一定增加
萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標系中橢圓C的方程為ρ2= ,以極點為原點,極軸為x軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(1)若橢圓上任一點坐標為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《幾何原本》卷2的幾何代數法(以幾何方法研究代數問題)成了后世西方數學家處理問題的重要依據,通過這一原理,很多的代數的公理或定理都能夠通過圖形實現證明,也稱之為無字證明.現有如圖所示圖形,點F在半圓O上,點C在直徑AB上,且OF⊥AB,設AC=a,BC=b,則該圖形可以完成的無字證明為( )
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.
(1)求證:AD⊥平面BFED;
(2)已知點P在線段EF上,=2.求三棱錐E-APD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,過F作平行于x軸的直線交拋物線于A,B兩點(A在B的左側),若△AOB的面積為2.
(1)求拋物線C的方程;
(2)設P是拋物線C的準線上一點,Q是拋物線上的一點,若PF⊥QF,求證:直線PQ與拋物線相切.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com