【題目】2009年推出一種新型家用轎車,購買時費用為萬元,每年應交付保險費、養路費及汽油費共
萬元,汽車的維修費為:第一年無維修費用,第二年為
萬元,從第三年起,每年的維修費均比上一年增加
萬元.(1)設該輛轎車使用
年的總費用(包括購買費用、保險費、養路費、汽油費及維修費)為
,求
的表達式;(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?
【答案】(1);(2)
.
【解析】
試題分析:根據題意分析可知,使用年的總費用包含三部分,第一部分是購買費用,固定值為
萬元,第二部分是保險費用、養路費及汽油費用共
萬元,第三部分是維修費用,根據題意維修用為等差數列,首項為
,公差為
,因此
年的維修費用為
,所以
;(2)根據題意,年平均費用為
,所以問題轉化為求
的最小值,可以利用均值不等式求最小值.
試題解析:(1)由題意得:每年的維修費構成一等差數列,年的維修總費用為
(萬元)………………………………3分
所以(萬元)……………………6分
(2)該輛轎車使用年的年平均費用為
………………………………8分
(萬元)……………………………………10分
當且僅當時取等號,此時
.
答:這種汽車使用12年報廢最合算.…………12分
科目:高中數學 來源: 題型:
【題目】已知向量.
(1)若分別表示將一枚質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現的點數,求滿足
的概率;
(2)若在連續區間
上取值,求滿足
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:
,半徑為2的圓
與
相切,圓心
在
軸上且在直線
的右上方.
(1)求圓的方程;
(2)若直線過點且與圓
交于
,
兩點(
在
軸上方,
在
軸下方),問在
軸正半軸上是否存在定點
,使得
軸平分
?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(I)求證:在區間
上單調遞增;
(II)若,函數
在區間
上的最大值為
,求
的試題分析式.并判斷
是否有最大值和最小值,請說明理由(參考數據:
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護環境,2015年合肥市勝利工廠在市政府的大力支持下,進行技術改進:把二氧化碳轉化為某種化工產品,經測算,該處理成本(萬元)與處理量
(噸)之間的函數關系可近似地表示為:
且每處理一噸二氧化碳可得價值為20萬元的某種化工產品.
(1)當時,判斷該技術改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市有一直角梯形綠地,其中
,
km,
km.現過邊界
上的點
處鋪設一條直的灌溉水管
,將綠地分成面積相等的兩部分.
(1)如圖①,若為
的中點,
在邊界
上,求灌溉水管
的長度;
(2)如圖②,若在邊界
上,求灌溉水管
的最短長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數,乙組記錄中有一個數據模糊,無法確認,在圖中用表示.
(1)若乙組同學投籃命中次數的平均數比甲組同學的平均數少1,求及乙組同學投籃命中次數的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數之和為16的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com