【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是
【答案】
【解析】解:設正△ABC的中心為O1 , 連結O1O、O1C、O1E、OE,
∵O1是正△ABC的中心,A、B、C三點都在球面上,
∴O1O⊥平面ABC,結合O1C平面ABC,可得O1O⊥O1C,
∵球的半徑R=2,球心O到平面ABC的距離為1,得O1O=1,
∴Rt△O1OC中,O1C=
又∵E為AB的中點,∴Rt△O1EC中,O1E=O1C=
.
∴Rt△OO1E中,OE=
∵過E作球O的截面,當截面與OE垂直時,截面圓的半徑最小,
∴當截面與OE垂直時,截面圓的面積有最小值.
此時截面圓的半徑r=
可得截面面積為S=πr2= .
故答案為: .
設正△ABC的中心為O1 , 連結O1O、O1C、O1E、OE.根據球的截面圓性質、正三角形的性質與勾股定理,結合題中數據算出OE.而經過點E的球O的截面,當截面與OE垂直時截面圓的半徑最小,相應地截面圓的面積有最小值,由此算出截面圓半徑的最小值,從而可得截面面積的最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函數y=f(x)的定義域;
(Ⅱ)判斷函數y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(其中
).對于不相等的實數
,設
,
.現有如下命題:
(1)對于任意不相等的實數,都有
;
(2)對于任意的a及任意不相等的實數,都有
;
(3)對于任意的a,存在不相等的實數,使得
;
(4)對于任意的a,存在不相等的實數,使得
.
其中的真命題有_____________(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有正整數構成的數表如下:
第一行:1
第二行:1 2
第三行:1 1 2 3
第四行:1 1 2 1 1 2 3 4
第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5
…… …… ……
第行:先抄寫第1行,接著按原序抄寫第2行,然后按原序抄寫第3行,...,直至按原序抄寫第
行,最后添上數
.(如第四行,先抄寫第一行的數1,接著按原序抄寫第二行的數1,2,接著按原序抄寫第三行的數1,1,2,3,最后添上數4).
將按照上述方式寫下的第個數記作
(如
)
(1)用表示數表第
行的數的個數,求數列
的前
項和
;
(2)第8行中的數是否超過73個?若是,用表示第8行中的第73個數,試求
和
的值;若不是,請說明理由;
(3)令,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的動直線與圓
相交于不同的兩點
,
.
(1)求圓的圓心坐標;
(2)求線段的中點
的軌跡
的方程;
(3)是否存在實數,使得直線
與曲線
只有一個交點?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是橢圓
:
上的一點,橢圓的右焦點為
,斜率為
的直線
交橢圓
于
、
兩點,且
、
、
三點互不重合.
(1)求橢圓的方程;
(2)求證:直線,
的斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體中,
為棱
上一動點,
為底面
上一動點,
是
的中點,若點
都運動時,點
構成的點集是一個空間幾何體,則這個幾何體是( )
A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com