【題目】函數f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到y=cos2x的圖象,則只要將f(x)的圖象( 。
A.向左平移個單位長度
B.向右平移個單位長度
C.向左平移個單位長度
D.向右平移個單位長度
科目:高中數學 來源: 題型:
【題目】設函數,
(
).
(Ⅰ)求函數的單調增區間;
(Ⅱ)當時,記
,是否存在整數
,使得關于
的不等式
有解?若存在,請求出
的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若函數在
處的切線平行于直線
,求實數a的值;
(Ⅱ)判斷函數在區間
上零點的個數;
(Ⅲ)在(Ⅰ)的條件下,若在上存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐的側棱底面
,且底面
是直角梯形,
,
,
,點
在側棱上.
(1)求證:平面
;
(2)若側棱與底面
所成角的正切值為
,點
為側棱
的中點,求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數F(x)=af(x)+tx2﹣2t+1在區間(﹣1,2]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)對定義域R內的任意x都有f(x)=f(4﹣x),且當x≠2時其導函數f′(x)滿足(x﹣2)f′(x)>0,若2<a<4則( 。
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a)
C.f(3)<f(log2a)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com