【題目】將函數的圖像向左平移
個單位長度,再將圖像上所有點的橫坐標伸長到原來的
倍(縱坐標不變),得到
的圖像.
(1)求的單調遞增區間;
(2)若對于任意的,不等式
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為
,甲由扇形中心
出發沿
以每秒2米的速度向
快走,同時乙從
出發,沿扇形弧以每秒
米的速度向
慢跑,記
秒時甲、乙兩人所在位置分別為
,
,通過計算
,判斷下列說法是否正確:
(1)當時,函數
取最小值;
(2)函數在區間
上是增函數;
(3)若最小,則
;
(4)在
上至少有兩個零點;
其中正確的判斷序號是______(把你認為正確的判斷序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中無理數
.
(Ⅰ)若函數有兩個極值點,求
的取值范圍;
(Ⅱ)若函數的極值點有三個,最小的記為
,最大的記為
,若
的最大值為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(Ⅰ)求曲線
的直角坐標方程,并指出其表示何種曲線;(Ⅱ)設直線
與曲線
交于
兩點,若點
的直角坐標為
,試求當
時,
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調性;
(II)確定a的所有可能取值,使得在區間(1,+∞)內恒成立(e=2.718…為自然對數的底數)。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】清華大學自主招生考試題中要求考生從A,B,C三道題中任選一題作答,考試結束后,統計數據顯示共有600名學生參加測試,選擇A,B,C三題答卷數如下表:
題 | A | B | C |
答卷數 | 180 | 300 | 120 |
(Ⅰ)負責招生的教授為了解參加測試的學生答卷情況,現用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應分別從選擇B,C題作答的答卷中各抽出多少份?
(Ⅱ)測試后的統計數據顯示,A題的答卷得優的有60份,若以頻率作為概率,在(Ⅰ)問中被抽出的選擇A題作答的答卷中,記其中得優的份數為,求
的分布列及其數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題中:①在回歸分析中,可用相關系數r的值判斷模型的擬合效果,|r|越大,模擬的擬合效果越好;②在一組樣本數據不全相等)的散點圖中,若所有樣本點
都在直線
上,則這組樣本數據的線性相關系數為
;③對分類變量x與y的隨機變量
來說,
越小,判斷“x與y有關系”的把握程度越大.其中真命題的個數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,且離心率為
,
為橢圓上任意一點,當
時,
的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓
上異于橢圓頂點的一點,延長直線
,
分別與橢圓交于點
,
,設直線
的斜率為
,直線
的斜率為
,求證:
為定值.
【答案】(1);(2)
【解析】試題分析:(1)設由題
,由此求出
,可得橢圓
的方程;
(2)設,
,
當直線的斜率不存在時,可得
;
當直線的斜率不存在時,同理可得
.
當直線、
的斜率存在時,
,
設直線的方程為
,則由
消去
通過運算可得
,同理可得
,由此得到直線
的斜率為
,
直線
的斜率為
,進而可得
.
試題解析:(1)設由題
,
解得,則
,
橢圓
的方程為
.
(2)設,
,
當直線的斜率不存在時,設
,則
,
直線的方程為
代入
,可得
,
,
,則
,
直線
的斜率為
,直線
的斜率為
,
,
當直線的斜率不存在時,同理可得
.
當直線、
的斜率存在時,
,
設直線的方程為
,則由
消去
可得:
,
又,則
,代入上述方程可得
,
,則
,
設直線的方程為
,同理可得
,
直線
的斜率為
,
直線
的斜率為
,
.
所以,直線與
的斜率之積為定值
,即
.
【題型】解答題
【結束】
21
【題目】已知函數,
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com