【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程及直線
的直角坐標方程;
(2)已知點為曲線
上的動點,當點
到直線
的距離最大時,求點
的直角坐標.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)為曲線
上的動點,點
在線段
上,且滿足
,求點
的軌跡
的直角坐標方程;
(2)設點的極坐標為
,點
在曲線
上,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某音樂院校舉行“校園之星”評選活動,評委由本校全體學生組成,對兩位選手,隨機調查了
個學生的評分,得到下面的莖葉圖:
通過莖葉圖比較
兩位選手所得分數的平均值及分散程度(不要求計算出具體值,得出結論即可);
校方將會根據評分記過對參賽選手進行三向分流:
所得分數 | 低于 |
| 不低于 |
分流方向 | 淘汰出局 | 復賽待選 | 直接晉級 |
記事件“
獲得的分流等級高于
”,根據所給數據,以事件發生的頻率作為相應事件發生的概率,求事件
發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓,點
,
是圓
上任意一點,線段
的垂直平分線與半徑
相交于點
,設點
的軌跡為曲線
。
(1)求曲線的方程;
(2)若,設過點
的直線
與曲線
分別交于點
,其中
,求證:直線
必過
軸上的一定點。(其坐標與
無關)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業新研發了一種產品,產品的成本由原料成本及非原料成本組成.每件產品的非原料成本(元)與生產該產品的數量
(千件)有關,經統計得到如下數據:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根據以上數據,繪制了散點圖.
觀察散點圖,兩個變量不具有線性相關關系,現考慮用反比例函數模型和指數函數模型
分別對兩個變量的關系進行擬合.已求得用指數函數模型擬合的回歸方程為
,
與
的相關系數
.
參考數據(其中):
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.5 | 61.4 | 0.135 |
(1)用反比例函數模型求關于
的回歸方程;
(2)用相關系數判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產量為10千件時每件產品的非原料成本;
(3)該企業采取訂單生產模式(根據訂單數量進行生產,即產品全部售出).根據市場調研數據,若該產品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產品的原料成本為10元,根據(2)的結果,企業要想獲得更高利潤,產品單價應選擇100元還是90元,請說明理由.
參考公式:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
,相關系數
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數f(x)的單調區間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,過點
的直線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,已知曲線
的極坐標方程為
,記直線
與曲線
分別交于
兩點.
(1)求曲線和
的直角坐標方程;
(2)證明:成等比數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com