【題目】設各項均為正數的數列的前
項和為
,已知
,且
對一切
都成立.
(1)當時.
①求數列的通項公式;
②若,求數列
的前
項的和
;
(2)是否存在實數,使數列
是等差數列.如果存在,求出
的值;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點為原點,其焦點
到直線
的距離為
.設
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(1) 求拋物線的方程;
(2) 當點為直線
上的定點時,求直線
的方程;
(3) 當點在直線
上移動時,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前n項和為
,已知
,
,
.
(1)證明:為等比數列,求出
的通項公式;
(2)若,求
的前n項和
,并判斷是否存在正整數n使得
成立?若存在求出所有n值;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的一個焦點為
,離心率為
.
(1)求的標準方程;
(2)若動點為
外一點,且
到
的兩條切線相互垂直,求
的軌跡
的方程;
(3)設的另一個焦點為
,自直線
:
上任意一點
引(2)所求軌跡
的一條切線,切點為
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】法國有個名人叫做布萊爾·帕斯卡,他認識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設每局兩賭徒輸贏的概率各占,每局輸贏相互獨立,那么這700法郎如何分配比較合理( )
A.甲400法郎,乙300法郎B.甲500法郎,乙200法郎
C.甲525法郎,乙175法郎D.甲350法郎,乙350法郎
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據有關資料預測,某市下月1—14日的空氣質量指數趨勢如下圖所示.,根據已知折線圖,解答下面的問題:
(1)求污染指數的眾數及前五天污染指數的平均值;(保留整數)
(2)為了更好發揮空氣質量監測服務人民的目的,監測部門在發布空氣質量指數的同時,也給出了出行建議,比如空氣污染指數大于150時需要戴口罩,超過200時建議減少外出活動等等.如果某人事先沒有注意到空氣質量預報,而在1—12號這12天中隨機選定一天,欲在接下來的兩天中(不含選定當天)進行外出活動.求其外出活動的兩天期間.
①恰好都遭遇重度及以上污染天氣的概率;
②至少有一天能避開重度及以上污染天氣的概率.
附:空氣質量等級參考表:
等級 | 優 | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com