精英家教網 > 高中數學 > 題目詳情

【題目】造紙術是我國古代四大發明之一,紙張的規格是指紙張制成后,經過修整切邊,裁成一定的尺寸.現在我國采用國際標準,規定以、;、、等標記來表示紙張的幅面規格.復印紙幅面規格只采用系列和系列,共中系列的幅面規格為:①規格的紙張的幅寬(表示)和長度(表示)的比例關系為;②將紙張沿長度方向對開成兩等分,便成為規格,紙張沿長度方向對開成兩等分,便成為規格,,如此對開至規格.現有、、、紙各一張.若紙的面積為.則這9張紙的面積之和等于__________

【答案】

【解析】

根據題意,求出紙張的長度和寬度,構造紙張面積的等比數列,利用等比數列前項和的計算公式,即可求得.

由題可設,紙的面積為

根據題意,紙張面積是首項為,公比為的等比數列,

則容易知紙張的面積為,故可得,

故紙張面積是一個首項為,公比為的等比數列,

張紙的面積之和為.

故答案為:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線與直線lykx1無交點,設點P為直線l上的動點,過P作拋物線C的兩條切線,A,B為切點.

1)證明:直線AB恒過定點Q;

2)試求PAB面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數方程為為參數),直線l的參數方程為t為參數),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,射線m

1)求Cl的極坐標方程;

2)設mCl分別交于異于原點的AB兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于圓周率,數學發展史上出現過許多有創意的求法,如著名的普豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數對,再統計其中x,y能與1構成鈍角三角形三邊的數對的個數m,最后根據統計個數m估計的值.如果統計結果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為提高產品質量,某企業質量管理部門經常不定期地抽查產品進行檢測,現在某條生產線上隨機抽取100個產品進行相關數據的對比,并對每個產品進行綜合評分(滿分100分),將每個產品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產品為一等品.

1)求圖中的值,并求綜合評分的中位數;

2)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產線中隨機抽取5個產品,再從這5個產品中隨機抽取2個產品記錄有關數據,求這2個產品中恰有一個一等品的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數值越小,星星就越亮;星等的數值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,則與最接近的是(較小時, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為(其中為參數,且,在以為極點、軸的非負半軸為極軸的極坐標系(兩種坐標系取相同的單位長度)中,曲線的極坐標方程為,設直線經過定點,且與曲線交于兩點.

(Ⅰ)求點的直角坐標及曲線的直角坐標方程;

(Ⅱ)求證:不論為何值時,為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:橢圓的離心率為,且,過左焦點作一條直線交橢圓于、兩點,過線段的中點的垂線交軸于點.

1)求橢圓方程;

2)當面積最大時,求直線的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的普通方程和的直角坐標方程;

2)過點作傾斜角為的直線兩點,過作與平行的直線點,若,求

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视