【題目】在平面直角坐標系中,曲線
的參數方程為
,其中
為參數,在以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,點
的極坐標為
, 直線
的極坐標方程為
.
(1)求直線的直角坐標方程與曲線
的普通方程;
(2)若是曲線
上的動點,
為線段
的中點.求點
到直線
的距離的最大值.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓
及點
,
.
(1)若直線平行于
,與圓
相交于
,
兩點,
,求直線
的方程;
(2)在圓上是否存在點
,使得
?若存在,求點
的個數;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數有( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心為原點
,且與直線
相切.
(1)求圓的方程;
(2)點在直線
上,過
點引圓
的兩條切線
,
,切點為
,
,求證:直線
恒過定點.
(3)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“應用”的用戶中隨機抽取了100名用戶進行調查得到如下數據:
每周使用時間 |
| |||||
男 | 4 | 3 | 3 | 7 | 6 | 30 |
女 | 6 | 5 | 4 | 4 | 8 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用該“應用”時間不超過
的樣本中,按性別分層抽樣,隨機抽取5名用戶:
①求抽取的5名用戶中男,女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.
(2)如果每周使用該“應用”超過
的用戶認為“喜歡該應用”,能否在犯錯誤的概率不超過0.05的前提下認為“喜歡該應用”與性別有關.
參考公式:,其中
下面的臨界值表僅供參考:
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象與x軸交點為
,與此交點距離最小的最高點坐標為
.
(Ⅰ)求函數的表達式;
(Ⅱ)若函數滿足方程
,求方程在
內的所有實數根之和;
(Ⅲ)把函數的圖像的周期擴大為原來的兩倍,然后向右平移
個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數
的圖像.若對任意的
,方程
在區間
上至多有一個解,求正數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com