【題目】2017年5月,“一帶一路”沿線的20國青年評選出了中國“新四大發明”:高鐵、支付寶、共享單車和網購.2017年末,“支付寶大行動”用發紅包的方法刺激支付寶的使用.某商家統計前5名顧客掃描紅包所得金額分別為5.5元,2.1元,3.3元,5.9元,4.7元,商家從這5名顧客中隨機抽取3人贈送臺歷.
(1)求獲得臺歷是三人中至少有一人的紅包超過5元的概率;
(2)統計一周內每天使用支付寶付款的人數與商家每天的凈利潤
元,得到7組數據,如表所示,并作出了散點圖.
(i)直接根據散點圖判斷,與
哪一個適合作為每天的凈利潤的回歸方程類型.(
的值取整數)
(ii)根據(i)的判斷,建立關于
的回歸方程,并估計使用支付寶付款的人數增加到35時,商家當天的凈利潤.
參考數據:
22.86 | 194.29 | 268.86 | 3484.29 |
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
.
【答案】(Ⅰ)(Ⅱ)(。┮娊馕 (ⅱ)見解析
【解析】分析:(Ⅰ)名顧客中紅包超過5元的兩人分別記為
,不足
元的三人分別記為
,列舉出從這
名顧客中隨機抽取3人,所有基本事件的總數,利用古典概型及其概率的計算公式即可求解.
(Ⅱ)(ⅰ)根據散點圖可判斷,選擇作為每天的凈利潤的回歸方程類型比較適合.
(ⅱ)利用最小二乘法求得系數,求的回歸系數,進而得到回歸直線方程,即可作出預測.
詳解:(Ⅰ)記事件“獲得臺歷的三人中至少有一人的紅包超過5元”為事件M,5名顧客中紅包超過5元的兩人分別記為,不足5元的三人分別記為
,從這5名顧客中隨機抽取3人,共有抽取情況如下:
,共10種.
其中至少有一人的紅包超過5元的是前9種情況,
所以.
(Ⅱ)(。└鶕Ⅻc圖可判斷,選擇作為每天的凈利潤的回歸方程類型比較適合.
(ⅱ)由最小二乘法求得系數
,
所以
所以關于
的回歸方程為
.
當時,商家當天的凈利潤
元,
故使用支付寶付款的人數增加到35時,預計商家當天的凈利潤為352元.
科目:高中數學 來源: 題型:
【題目】“微信運動”已經成為當下熱門的健身方式,韓梅梅的微信朋友圈內有800為好友參與了“微信運動”.他隨機抽取了50為微信好友(男、女各25人),統計其在某一天的走路步數.其中女性好友的走路步數數據記錄如下:
12860 8320 10231 6734 7323 8430 3200 4543 11123 9860
8753 6454 7292 4850 10222 9734 7944 9117 6421 2980
1123 1786 2436 3876 4326
男性好友走路步數情況可以分為五個類別(0-2000步)(說明:“0-2000”表示大于等于0,小于等于2000,下同),
(2001-5000)、
(5001-8000)、
(8001-10000步)、
(10001步及以上),且
三中類型的人數比例為
,將統計結果繪制如圖所示的柱形圖.
若某人一天的走路步數超過8000步則被系統評定為“積極型”,否則被系統評定為“懈怠型”.
(1)若以韓梅梅抽取的好友當天行走步數的頻率分布來估計所有微信好友每日走路步數的概率分布,請估計韓梅梅的微信好友圈里參與“微信運動”的800名好友中,每天走路步數在5001-10000步的人數;
(2)請根據選取的樣本數據完成下面的列聯表,并據此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
積極型 | 懈怠型 | 總計 | |
男 | 25 | ||
女 | 25 | ||
總計 | 30 |
(3)若從韓梅梅當天選取的步數大于10000的好友中按男女比例分層選取5人進行身體狀況調查,然后再從這5位好友中選取2人進行訪談,求至少有一位女性好友訪談的概率.
參考公式:,其中
.
臨界值表:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
【答案】(1)見解析;(2)
【解析】(1)證明略;(2)直線的方程為
,圓
的方程為
.或直線
的方程為
,圓
的方程為
試題分析:(1)設出點的坐標,聯立直線與拋物線的方程,由斜率之積為可得
,即得結論;(2)結合(1)的結論求得實數
的值,分類討論即可求得直線
的方程和圓
的方程.
試題解析:(1)設,
.
由 可得
,則
.
又,故
.
因此的斜率與
的斜率之積為
,所以
.
故坐標原點在圓
上.
(2)由(1)可得.
故圓心的坐標為
,圓
的半徑
.
由于圓過點
,因此
,故
,
即,
由(1)可得.
所以,解得
或
.
當時,直線
的方程為
,圓心
的坐標為
,圓
的半徑為
,圓
的方程為
.
當時,直線
的方程為
,圓心
的坐標為
,圓
的半徑為
,圓
的方程為
.
【名師點睛】直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數的關系;在解決直線與拋物線的位置關系時,要特別注意直線與拋物線的對稱軸平行的特殊情況.中點弦問題,可以利用“點差法”,但不要忘記驗證或說明中點在曲線內部.
【題型】解答題
【結束】
21
【題目】已知函數.
(1)若,求a的值;
(2)設m為整數,且對于任意正整數n,,求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)證明:;
(2)證明:對任何正整數n,存在多項式函數,使得
對所有實數x均成立,其中
均為整數,當n為奇數時,
,當n為偶數時,
;
(3)利用(2)的結論判斷是否為有理數?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯表,并回答能否有
的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)若將頻率視為概率,現再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數為,若每次抽取的結果是相互獨立的,求
的分布列,期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,從參加環保知識競賽的學生中抽出60名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數、頻率分別是多少?
(2)估計這次環保知識競賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某商品在過去20天的日銷售量和日銷售價格均為銷售時間t(天)的函數,日銷售量(單位:件)近似地滿足: ,日銷售價格(單位:元)近似地滿
足:
(I)寫出該商品的日銷售額S關于時間t的函數關系;
(Ⅱ)當t等于多少時,日銷售額S最大?并求出最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司將進貨單價為8元一個的商品按10元一個出售,每天可以賣出100個,若這種商品的售價每個上漲1元,則銷售量就減少10個.
(1)求售價為13元時每天的銷售利潤;
(2)求售價定為多少元時,每天的銷售利潤最大,并求最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com