【題目】已知函數為定義在
上的偶函數,且當
時,
.
(1)求當時,
的解析式;
(2)在網格中繪制的圖像;
(3)若方程有四個根,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程是
,點
是曲線
上的動點.點
滿足
(
為極點).設點
的軌跡為曲線
.以極點
為原點,極軸為
軸的正半軸建立平面直角坐標系
,已知直線
的參數方程是
,(
為參數).
(1)求曲線的直角坐標方程與直線
的普通方程;
(2)設直線交兩坐標軸于
,
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①若函數在區間
上單調遞增,則
;
②若 (
且
),則
的取值范圍是
;
③若函數,則對任意的
,都有
;
④若 (
且
),在區間
上單調遞減,則
.
其中所有正確命題的序號是______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線,則下列結論正確的是 ( )
A. 把向左平移
個單位長度,得到的曲線關于原點對稱
B. 把向右平移
個單位長度,得到的曲線關于
軸對稱
C. 把向左平移
個單位長度,得到的曲線關于原點對稱
D. 把向右平移
個單位長度,得到的曲線關于
軸對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,E、F、G分別是PA、PB、BC的中點
(1)證明:平面EFG∥平面PCD;
(2)若平面EFG截四棱錐P-ABCD所得截面的面積為,求四棱錐P-ABCD的體積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數: ,其中
是儀器的月產量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產量
的函數;
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農業合作社生產了一種綠色蔬菜共噸,如果在市場上直接銷售,每噸可獲利
萬元;如果進行精加工后銷售,每噸可獲利
萬元,但需另外支付一定的加工費,總的加工
(萬元)與精加工的蔬菜量
(噸)有如下關系:
設該農業合作社將
(噸)蔬菜進行精加工后銷售,其余在市場上直接銷售,所得總利潤(扣除加工費)為
(萬元).
(1)寫出關于
的函數表達式;
(2)當精加工蔬菜多少噸時,總利潤最大,并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:4x-3y+6=0和直線l2:x=-.若拋物線C:y2=2px(p>0)上的點到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若以拋物線上任意一點M為切點的直線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com