【題目】已知數列:
,
,
,
(
),與數列
:
,
,
,
,
(
),記
.
(1)若,求
的值;
(2)求的表達式;
(3)已知,且存在正整數
,使得在
中有4項為100,求
的值,并指出哪4項為100.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點
為極點,以
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
,曲線
的參數方程為:
(
為參數),
,
為直線
上距離為
的兩動點,點
為曲線
上的動點且不在直線
上.
(1)求曲線的普通方程及直線
的直角坐標方程.
(2)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
,動點
滿足直線
與直線
的斜率之積為
,設點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若過點的直線
與曲線
交于
,
兩點,過點
且與直線
垂直的直線與
相交于點
,求
的最小值及此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線與曲線
兩交點所在直線的極坐標方程;
(2)若直線的極坐標方程為
,直線
與
軸的交點為
,與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數;
(1)當時,若
,求
的取值范圍;
(2)若定義在上奇函數
滿足
,且當
時,
,
求在
上的反函數
;
(3)對于(2)中的,若關于
的不等式
在
上恒成立,求實
數的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓在圓
:
外部且與圓
相切,同時還在圓
:
內部與圓
相切.
(1)求動圓圓心的軌跡方程;
(2)記(1)中求出的軌跡為,
與
軸的兩個交點分別為
、
,
是
上異于
、
的動點,又直線
與
軸交于點
,直線
、
分別交直線
于
、
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在某商業區周邊有 兩條公路和
,在點
處交匯,該商業區為圓心角
,半徑3
的扇形,現規劃在該商業區外修建一條公路
,與
,
分別交于
,要求
與扇形弧相切,切點
不在
,
上.
(1)設試用
表示新建公路
的長度,求出
滿足的關系式,并寫出
的范圍;
(2)設,試用
表示新建公路
的長度,并且確定
的位置,使得新建公路
的長度最短.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com