【題目】等比數列{an}共有奇數項,所有奇數項和S奇=255,所有偶數項和S偶=﹣126,末項是192,則首項a1=( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:設等比數列有2n+1項,則奇數項有n+1項,偶數項有n項,設公比為q, 得到奇數項為奇數項為a1(1+q2+q4+…+q2n)=255,偶數項為a1(q+q3+q5+…+q2n﹣1)=﹣126,
所以qa1(1+q2+q4+…+q2n)=255q,即a1(q+q3+q5+…+q2n﹣1)+qa2n+1=255q,
可得:﹣126+192q=255q,解得q=﹣2.
所以所有奇數項和S奇=255,末項是192, =
=255,即:
解得n=3.是共有7項,a7=a1(﹣ )6 , 解得a1=3.
故選:C.
【考點精析】解答此題的關鍵在于理解等比數列的基本性質的相關知識,掌握{an}為等比數列,則下標成等差數列的對應項成等比數列;{an}既是等差數列又是等比數列== {an}是各項不為零的常數列.
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點A到平面BDE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:實數x滿足x2﹣4ax+3a2<0,其中a>0;命題q:實數x滿足x2﹣5x+6≤0
(1)若a=1,且q∧p為真,求實數x的取值范圍;
(2)若p是q必要不充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等差數列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數列. (Ⅰ)求數列{an}的公差;
(Ⅱ)設bn= ,求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com