【題目】已知函數f(x)是定義在R上的偶函數,f(2)=0, <0(x>0),則不等式xf(x)<0的解集 .
【答案】(﹣2,0)∪(2,+∞)
【解析】解:令g(x)= , ∵x>0時,g′(x)=
<0,
∴g(x)在(0,+∞)遞減,
∵f(﹣x)=f(x),
∴g(﹣x)= =﹣g(x),
g(x)在(﹣∞,0)遞減,
∴g(x)是奇函數,
g(2)= =0,
∴0<x<2時,g(x)>0,x>2時,g(x)<0,
根據函數的奇偶性,﹣2<x<0時,g(x)<0,x<﹣2時,g(x)>0,
xf(x)<0,即x2g(x)<0,即g(x)<0,
∴x>2或﹣2<x<0,
所以答案是:(﹣2,0)∪(2,+∞).
【考點精析】根據題目的已知條件,利用利用導數研究函數的單調性的相關知識可以得到問題的答案,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分別是AC、BC中點.
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義函數序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),則函數y=f2017(x)的圖象與曲線
的交點坐標為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,∠ADC=90°,AB∥CD,AD=CD=DD1=2AB=2. (Ⅰ) 求證:AD1⊥B1C;
(Ⅱ) 求二面角A1﹣BD﹣C1的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)滿足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表達式為f(x)= ,則函數f(x)與函數g(x)=
的圖象在區間[﹣3,3]上的交點個數為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)═log2( +a).
(1)若f(1)<2,求實數a的取值范圍;
(2)設函數g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],討論函數g(x)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意的x∈(﹣ ,
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數f(x)的導函數),則下列不等式成立的是( )
A. f(﹣
)<f(﹣
)
B. f(
)<f(
)
C.f(0)>2f( )
D.f(0)> f(
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在斜三棱柱ABC﹣A1B1C1中BC⊥CC1 , AC=BC=2,A1在底面ABC上的射影恰為AC的中點D.
(1)證明:BC⊥平面ACC1A1
(2)若二面角A﹣A1B﹣C的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com