精英家教網 > 高中數學 > 題目詳情

已知函數的部分圖像如圖所示.

(1)求函數f(x)的解析式,并寫出f(x)的單調減區間;
(2)的內角分別是A,B,C.若f(A)=1,,求sinC的值.

(1)(2)

解析試題分析:(1)根據函數的圖像可以得到函數f(x)的周期與最大值,則可以求的A,的值,在帶入函數的一個最值點坐標即可求出的值(注意范圍),就可以得到函數f(x)解析式,再根據正弦函數sinx的單調區間和復合函數單調性的判斷(同增異減),即可得到函數f(x)的單調區間.
(2)把f(A)=1帶入函數解析式即可求的A角的大小,在根據三角形內角和為1800和正弦的和差角公式就可以求出sinC的值.
試題解析:
(1)由圖象最高點得A=1,     1分
由周期.     2分
時,,可得,
因為,所以
.     4分
由圖象可得的單調減區間為.     6分
(2)由(I)可知,,
,
.     8分
.     9分
     10分
.
.     12分
考點:三角函數圖像特殊角度的三角函數值正弦和差角公式

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,
(l)求函數的最小正周期;
(2)當時,求函數f(x)的單調區間。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)求的定義域及最小正周期;
(2)求的單調遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中向量,
(1)求的單調遞增區間;
(2)在中,分別是角的對邊,已知,的面積為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在已知函數f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為M(,-2).
(1)求f(x)的解析式;
(2)當x∈[,]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知向量為常數且),函數上的最大值為
(1)求實數的值;
(2)把函數的圖象向右平移個單位,可得函數的圖象,若上為增函數,求取最大值時的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)在給定的平面直角坐標系中,畫函數,的簡圖;

(2)求的單調增區間;
(3) 函數的圖象只經過怎樣的平移變換就可得到的圖象?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,,為坐標原點.
(1),求的值;
(2)若,且,求的夾角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2sin.
(1)求函數y=f(x)的最小正周期及單調遞增區間;
(2)若f=-,求f(x0)的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视