【題目】已知正方形的邊長為
,將
沿對角線
折起,使平面
平面
,得到如圖所示的三棱錐
,若
為
邊的中點,
分別為
上的動點(不包括端點),且
,設
,則三棱錐
的體積取得最大值時,三棱錐
的內切球的半徑為_______.
科目:高中數學 來源: 題型:
【題目】已知函數,
,若函數
有三個不同的零點
,
,
(其中
),則
的取值范圍為__________.
【答案】
【解析】如圖:
,
,作出函數圖象如圖所示
,
,作出函數圖象如圖所示
,由
有三個不同的零點
,如圖
令
得
為滿足有三個零點,如圖可得
,
點睛:本題考查了函數零點問題,先由導數求出兩個函數的單調性,繼而畫出函數圖像,再由函數的零點個數確定參量取值范圍,將問題轉化為函數的兩根問題來求解,本題需要化歸轉化,函數的思想,零點問題等較為綜合,有很大難度。
【題型】填空題
【結束】
17
【題目】已知等比數列的前
項和為
,且滿足
.
(1)求數列的通項公式;
(2)若數列滿足
,求數列
的前
項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了估計某校某次數學考試的情況,現從該校參加考試的600名學生中隨機抽出60名學生,其數學成績(百分制)均在內,將這些成績分成六組
…
,得到如圖所示的部分頻率分布直方圖.
(1)求抽出的60名學生中數學成績在內的人數;
(2)若規定成績不小于85分為優秀,則根據頻率分布直方圖,估計該校參加考試的學生數學成績為優秀的人數;
(3)試估計抽出的60名學生的數學成績的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,霧霾日趨嚴重,霧霾的工作、生活受到了嚴重的影響,如何改善空氣質量已成為當今的熱點問題,某空氣凈化器制造廠,決定投入生產某型號的空氣凈化器,根據以往的生產銷售經驗得到下面有關生產銷售的統計規律,每生產該型號空氣凈化器(百臺),其總成本為
(萬元),其中固定成本為12萬元,并且每生產1百臺的生產成本為10萬元(總成本=固定成本+生產成本),銷售收入
(萬元)滿足
,假定該產品銷售平衡(即生產的產品都能賣掉),根據上述統計規律,請完成下列問題:
(1)求利潤函數的解析式(利潤=銷售收入-總成本);
(2)工廠生產多少百臺產品時,可使利潤最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】填空:
(1)如果,且
,則
是第________象限角;
(2)如果,且
,則
是第________象限角;
(3)如果,且
,則
是第________象限角;
(4)如果,且
,則
是第________象限角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
是以
為斜邊的直角三角形,
,
,
,
.
(1)若線段上有一個點
,使得
平面
,請確定點
的位置,并說明理由;
(2)若平面平面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐試驗.受其啟發,我們也可以通過設計下面的試驗來估計
的值,試驗步驟如下:①先請高二年級 500名同學每人在小卡片上隨機寫下一個實數對
;②若卡片上的
能與1構成銳角三角形,則將此卡片上交;③統計上交的卡片數,記為
;④根據統計數
估計
的值.假如本次試驗的統計結果是
,那么可以估計
的值約為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商小王對其所經營的某一型號二手汽車的使用年數(0<
≤10)與銷售價格
(單位:萬元/輛)進行整理,得到如下的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關于
的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(Ⅰ)中所求的回歸方程,
預測為何值時,小王銷售一輛該型號汽車所獲得的利潤
最大.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com