為了解某班學生關注NBA是否與性別有關,對本班48人進行了問卷調查得到如下的列聯表:
| 關注NBA | 不關注NBA | 合 計 |
男 生 | | 6 | |
女 生 | 10 | | |
合 計 | | | 48 |
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)關注NBA與性別有關;(2)分布列(略),E(X)=1.
解析試題分析:(1)本小題獨立性檢測的應用,本小題的關鍵是計算出
科目:高中數學
來源:
題型:解答題
一個袋中裝有大小相同的黑球和白球共9個,從中任取2個球,記隨機變量
科目:高中數學
來源:
題型:解答題
某校舉行綜合知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進行,每位選手最多有6次答題的機會,選手累計答對4題或答錯3題即終止其初賽的比賽,答對4題者直接進入決賽,答錯3題者則被淘汰.已知選手甲答題連續兩次答錯的概率為
科目:高中數學
來源:
題型:解答題
甲有大小相同的兩張卡片,標有數字2、3;乙有大小相同的卡片四張,分別標有1、2、3、4.
科目:高中數學
來源:
題型:解答題
同時拋擲4枚均勻的硬幣80次,設4枚硬幣正好出現2枚正面向上,2枚反面向上的次數為
科目:高中數學
來源:
題型:解答題
某地區為了解高二學生作業量和玩電腦游戲的情況,對該地區內所有高二學生采用隨機抽樣的方法,得到一個容量為200的樣本.統計數據如下:
科目:高中數學
來源:
題型:解答題
為了解七班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
科目:高中數學
來源:
題型:解答題
設每個工作日甲、乙、丙、丁4人需使用某種設備的概率分別是0.6, 0.5,0.5,0.4,各人是否使用設備相互獨立,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區的觀測值
,和
對應的臨界值
,根據關注NBA的學生的概率為
,可知關注NBA的學生為32(估計值).根據條件填滿表格,然后計算出
,并判斷其與
的大小關系,得出結論.(2)對于分布列問題:首先應弄清隨機變量是誰以及隨機變量的取值范圍,然后就是每個隨機變量下概率的取值,最后列表計算期望.
試題解析:
(1)將列聯表補充完整有:
由 關注NBA 不關注NBA 合 計 男生 22 6 28 女生 10 10 20 合計 32 16 48 ,計算可得
4分
因此,在犯錯的概率不超過0.05的前提下認為學生關注NBA與性別有關,
即有把握認為關注NBA與性別有關 6分
(2)由題意可知,X的取值為0,1,2,,
,
9分
所以X的分布列為X 0 1 2 p 課課練江蘇系列答案
課課通導學練精編系列答案
名牌中學課時作業系列答案
動感課堂講練測系列答案
明天教育課時特訓系列答案
浙江新課程三維目標測評課時特訓系列答案
蓉城學堂課課練系列答案
先鋒課堂導學案系列答案
名牌小學課時作業系列答案
勵耘書業浙江期末系列答案
為取出2球中白球的個數,已知
.
(Ⅰ)求袋中白球的個數;
(Ⅱ)求隨機變量的分布列及其數學期望.
(已知甲回答每道題的正確率相同,并且相互之間沒有影響).
(Ⅰ)求選手甲回答一個問題的正確率;
(Ⅱ)求選手甲可以進入決賽的概率.
(1)求乙隨機抽取的兩張卡片的數字之和為奇數的概率;
(2)甲、乙分別取出一張卡,比較數字,數字大者獲勝,求乙獲勝的概率..
(1)求拋擲4枚硬幣,恰好2枚正面向上,2枚反面向上的概率;
(2)求的數學期望和方差.
(1)已知該地區共有高二學生42500名,根據該樣本估計總體,其中喜歡電腦游戲并認為作業不多的人有多少名?
(2)在A,B,C,D,E,F六名學生中,僅有A,B兩名學生認為作業多.如果從這六名學生中隨機抽取兩名,求至少有一名學生認為作業多的概率.
喜愛打籃球
不喜愛打籃球
合計
男生
5
女生
10
合計
50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.(12分)
(1)請將上面的列聯表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關?說明你的理由;
(3)現從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數為,求
的分布列與期望.
下面的臨界值表供參考:
0.15
0.10
0.05[
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中
)
(1)求同一工作日至少3人需使用設備的概率;
(2)實驗室計劃購買k臺設備供甲、乙、丙、丁使用,若要求“同一工作日需使用設備的人數大于k”的概率小于0.1,求k的最小值.
版權聲明:本站所有文章,圖片來源于網絡,著作權及版權歸原作者所有,轉載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網安備42018502000812號