【題目】設f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則( )
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1
科目:高中數學 來源: 題型:
【題目】解答題
(1)求不等式a2x﹣1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數,且當x>0時,f(x)= +1,求函數f(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現象稱為衰變.假設在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時間t(單位:年)滿足函數關系:M(t)=M0 ,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=( )
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2﹣(2a+1)x+2lnx(a≥0)
(1)當a=0時,求f(x)的單調區間;
(2)求y=f(x)在區間(0,2]上的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論中不正確的( )
A.logab?logbc?logca=1
B.函數f(x)=ex滿足f(a+b)=f(a)?f(b)
C.函數f(x)=ex滿足f(a?b)=f(a)?f(b)
D.若xlog34=1,則4x+4﹣x=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= 是定義在(﹣∞,+∞)上的奇函數,且f(
)=
.
(1)求實數a、b,并確定函數f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調性,并用定義證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則( )
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為奇函數,當x≥0時,f(x)= .g(x)=
,
(1)求當x<0時,函數f(x)的解析式,并在給定直角坐標系內畫出f(x)在區間[﹣5,5]上的圖象;(不用列表描點)
(2)根據已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com