【題目】已知:tan(α+ )=﹣
,(
<α<π).
(1)求tanα的值;
(2)求 的值.
【答案】
(1)解:∵tan(α+ )=
=﹣
,(
<α<π),∴tanα=﹣5.
(2)解:∵tanα=﹣5= ,∴α為鈍角,∴sinα>0,cosα<0,
再結合sin2α+cos2α=1,可得cosα=﹣ ,
∴ =
=2
cosα=﹣
【解析】(1)直接利用同角三角函數的基本關系、兩角和的正切公式求得tanα的值.(2)利用同角三角函數的基本關系、及三角函數在各個象限中的符號,求得cosα的值,再利用二倍角公式、兩角差的正弦公式求得要求式子的值.
【考點精析】根據題目的已知條件,利用同角三角函數基本關系的運用的相關知識可以得到問題的答案,需要掌握同角三角函數的基本關系:;
;(3) 倒數關系:
.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣a|+|x﹣5|.
(1)當a=1時,求f(x)的最小值;
(2)如果對任意的實數x,都有f(x)≥1成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣ (a,b∈N*),f(1)=
且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明函數y=f(x)在區間(﹣1,+∞)上的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個口袋中裝有個紅球
且
和
個白球,一次摸獎從中摸兩個球,兩個球顏色不同則為中獎.
(1)用表示一次摸獎中獎的概率
;
(2)若,設三次摸獎(每次摸獎后球放回)恰好有
次中獎,求
的數學期望
;
(3)設三次摸獎(每次摸獎后球放回)恰好有一次中獎的概率,當
取何值時,
最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=sin(2x﹣ )的圖象,只需把正弦曲線y=sinx上所有點( )
A.向右平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的
倍,縱坐標不變
B.向左平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的
倍,縱坐標不變
C.向右平移 個單位長度,再將所得圖象上的點橫坐標伸長為原來的2倍,縱坐標不變
D.向左平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,直平行六面體中,
為棱
上任意一點,
為底面
(除
外)上一點,已知
在底面
上的射影為
,若再增加一個條件,就能得到
,現給出以下條件:
①;②
在
上;③
平面
;④直線
和
在平面
的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為得到函數y=cos(2x+ )的圖象,只需將函數y=cos2x的圖象( )
A.向左平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向右平移 個長度單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有命題: ①y=|sinx﹣ |的周期是π;
②y=sinx+sin|x|的值域是[0,2];
③方程cosx=lgx有三解;
④ω為正實數,y=2sinωx在 上遞增,那么ω的取值范圍是
;
⑤在y=3sin(2x+ )中,若f(x1)=f(x2)=0,則x1﹣x2必為π的整數倍;
⑥若A、B是銳角△ABC的兩個內角,則點P(cosB﹣sinA,sinB﹣cosA在第二象限;
⑦在△ABC中,若 ,則△ABC鈍角三角形.其中真命題個數為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,傾斜角為
的直線
的參數方程為
(
為參數).以坐標原點為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)已知點.若點
的極坐標為
,直線
經過點
且與曲線
相交于
兩點,設線段
的中點為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com