【題目】數列滿足
,且
.
(1)求、
、
;
(2)求數列的通項公式;
(3)令,求數列
的最大值與最小值.
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,底面
是直角梯形,其中
,
,
,
,
為棱
上的點,且
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設為棱
上的點(不與
,
重合),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將直線l沿x軸正方向平移3個單位長度,沿y軸正方向平移5個單位長度,得到直線l1.再將直線l1沿x軸正方向平移1個單位長度,沿y軸負方向平移2個單位長度,又與直線l重合.若直線l與直線l1關于點(2,3)對稱,則直線l的方程是________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在實數集上的偶函數
和奇函數
滿足
.
(1)求與
的解析式;
(2)求證:在區間
上單調遞增;并求
在區間
的反函數;
(3)設(其中
為常數),若
對于
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F2,且離心率為
,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.
【答案】(Ⅰ)(Ⅱ)見解析
【解析】
(Ⅰ)由題意可求得,則
,橢圓
的方程為
.
(Ⅱ)設,
,
當直線的斜率不存在或直線
的斜率不存在時,
.
當直線、
的斜率存在時,
,設直線
的方程為
,聯立直線方程與橢圓方程,結合韋達定理計算可得直線
的斜率為
,直線
的斜率為
,則
.綜上可得:直線
與
的斜率之積為定值
.
(Ⅰ)設由題
,
解得,則
,
橢圓
的方程為
.
(Ⅱ)設,
,當直線
的斜率不存在時,
設,則
,直線
的方程為
代入
,
可得
,
,則
,
直線
的斜率為
,直線
的斜率為
,
,
當直線的斜率不存在時,同理可得
.
當直線、
的斜率存在時,
設直線
的方程為
,
則由消去
可得:
,
又,則
,代入上述方程可得:
,
,
則
,
設直線的方程為
,同理可得
,
直線
的斜率為
直線
的斜率為
,
.
所以,直線與
的斜率之積為定值
,即
.
【點睛】
(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯立,消去x(或y)建立一元二次方程,然后借助根與系數的關系,并結合題設條件建立有關參變量的等量關系.
(2)涉及到直線方程的設法時,務必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.
【題型】解答題
【結束】
21
【題目】已知函數f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線方程為(e-1)x+ey+e-1=0.
(Ⅰ)求a,b;
(Ⅱ)若方程f(x)=m有兩個實數根x1,x2,且x1<x2,證明:x2-x1≤1+.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中,
,前
項和為
,且
.
(1)求,
的值;
(2)證明:數列是等差數列,并寫出其通項公式;
(3)設(
),試問是否存在正整數
,
(其中
,使得
,
,
成等比數列?若存在,求出所有滿足條件的數對
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,且點
在橢圓
上.
(1)求橢圓的標準方程;
(2)當點在橢圓
的圖像上運動時,點
在曲線
上運動,求曲線
的軌跡方程,并指出該曲線是什么圖形;
(3)過橢圓上異于其頂點的任意一點
作曲線
的兩條切線,切點分別為
不在坐標軸上),若直線
在
軸,
軸上的截距分別為
試問:
是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知橢圓的左、右焦點分別為
,
,點
是橢圓的一個頂點,△
是等腰直角三角形.
(1)求橢圓的方程;
(2)設點是橢圓
上一動點,求線段
的中點
的軌跡方程;
(3)過點分別作直線
,
交橢圓于
,
兩點,設兩直線的斜率分別為
,
,
且,探究:直線
是否過定點,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com