【題目】已知橢圓的右焦點為
,且點
在橢圓
上.
(1)求橢圓的標準方程;
(2)當點在橢圓
的圖像上運動時,點
在曲線
上運動,求曲線
的軌跡方程,并指出該曲線是什么圖形;
(3)過橢圓上異于其頂點的任意一點
作曲線
的兩條切線,切點分別為
不在坐標軸上),若直線
在
軸,
軸上的截距分別為
試問:
是否為定值?若是,求出該定值;若不是,請說明理由.
【答案】(1) (2)
,曲線
的圖形是一個以坐標原點為圓心、
為半徑的圓 (3)是定值,
【解析】
(1)由得
,再把點
坐標代入又得一方程,聯立后可解得
得橢圓方程;
(2)設,用
表示
,把
代入橢圓方程可得曲線
方程,由方程可判斷曲線形狀;
(3)由(1)知,設點
,由
坐標可得切線方程,代入
點坐標于兩切線方程后觀察結論可得直線
方程,求出
,計算
,利用
在橢圓
上可得.
(1)由題意得,所以
又點在橢圓
上,所以
解得
所以橢圓的標準方程為
(2)設,則
,于是
,
由于點在橢圓
的圖像上,
所以 即
整理得,
所以曲線的軌跡方程為
曲線的圖形是一個以坐標原點為圓心,
為半徑的圓.
(3)由(1)知,設點
則直線的方程為
①
直線的方程為
②
把點的坐標代入①②得
所以直線的方程為
令得
令
得
所以又點
在橢圓
上,
所以即
為定值.
科目:高中數學 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段MPN是函數圖象的一段,點M到l1、l2的距離分別為8千米和1千米,點N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標系xOy,設點P的橫坐標為p.
(1)求曲線段MPN的函數關系式,并指出其定義域;
(2)若某人從點O沿公路至點P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角坐標系中,點
到拋物線
的準線的距離為
,點
是
上的定點,
、
是
上的兩個動點,且線段
的中點
在線段
上.
(1)拋物線的方程及
的值;
(2)當點、
分別在第一、四象限時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,且點
在橢圓
上.
(1)求橢圓的標準方程;
(2)當點在橢圓
的圖像上運動時,點
在曲線
上運動,求曲線
的軌跡方程,并指出該曲線是什么圖形;
(3)過橢圓上異于其頂點的任意一點
作曲線
的兩條切線,切點分別為
不在坐標軸上),若直線
在
軸,
軸上的截距分別為
試問:
是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinxcosxcos2x+1
(1)求f(x)的最小正周期和最大值,并寫出取得最大值時x的集合;
(2)將f(x)的函數圖象向左平移φ(φ>0)個單位后得到的函數g(x)是偶函數,求φ的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】狄利克雷函數為F(x).有下列四個命題:①此函數為偶函數,且有無數條對稱軸;②此函數的值域是
;③此函數為周期函數,但沒有最小正周期;④存在三點
,使得△ABC是等腰直角三角形,以上命題正確的是( )
A.①②B.①③C.③④D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與底面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂直,路燈C采用錐形燈罩,射出的管線與平面ABC部分截面如圖中陰影所示,路寬AD=24米,設
(1)求燈柱AB的高h(用表示);
(2)此公司應該如何設置的值才能使制作路燈燈柱AB和燈桿BC所用材料的總長度最?最小值為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com