【題目】按如圖所示的程序框圖操作: (Ⅰ)寫出輸出的數所組成的數集.若將輸出的數按照輸出的順序從前往后依次排列,則得到數列{an},請寫出數列{an}的通項公式;
(Ⅱ)如何變更A框內的賦值語句,使得根據這個程序框圖所輸出的數恰好是數列{2n}的前7項?
(Ⅲ)如何變更B框內的賦值語句,使得根據這個程序框圖所輸出的數恰好是數列{3n﹣2}的前7項?
【答案】解:(Ⅰ)輸出的數組成的集合為{1,3,5,7,9,11,13}; 數列{an}的通項公式為an=2n﹣1(n∈N* , 且n≤7).
(Ⅱ)將A框內的語句改為“a=2”即可.
(Ⅲ)將B框內的語句改為“a=a+3”即可
【解析】(Ⅰ)由程序框圖可知,本題求一個數列的前7項,且這一數列首項為1,后面每一項比前面項多2,所以可得輸出的數組成的集合,并且此數列{an}恰為首項為1,公差為2的等差數列,再用等差數列通項公式即可求出數列{an}的通項公式(Ⅱ)要想使根據這個程序框圖所輸出的數恰好是數列{2n}的前7項,則前7項應為2,4,6,8,10,12,14,所以只需.將A框內的語句改為“a=2”即可.(Ⅲ)要想使根據這個程序框圖所輸出的數恰好是數列{3n﹣2}的前7項,則前7項應為1,4,7,10,13,16,19.只需將B框內的語句改為“a=a+3”即可.
【考點精析】通過靈活運用等差數列的前n項和公式和算法的循環結構,掌握前n項和公式:;在一些算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,循環結構可細分為兩類:當型循環結構和直到型循環結構即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某商場欲經銷某種商品,考慮到不同顧客的喜好,決定同時銷售A、B兩個品牌,根據生產廠家營銷策略,結合本地區以往經銷該商品的大數據統計分析,A品牌的銷售利潤y1與投入資金x成正比,其關系如圖1所示,B品牌的銷售利潤y2與投入資金x的算術平方根成正比,其關系如圖2所示(利潤與資金的單位:萬元).
(1)分別將A、B兩個品牌的銷售利潤y1、y2表示為投入資金x的函數關系式;
(2)該商場計劃投入5萬元經銷該種商品,并全部投入A、B兩個品牌,問:怎樣分配這5萬元資金,才能使經銷該種商品獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的可導函數f(x)的導函數為f′(x),滿足f′(x)>f(x),且f(x+2)為奇函數,f(4)=﹣1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinxcosx﹣cos2x+
,(x∈R).
(1)若對任意x∈[﹣ ,
],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點縱坐標不變,橫坐標變為原來的2倍,然后再向左平移 個單位得到函數y=g(x)的圖象,求函數y=g(x)﹣
在區間[﹣2π,4π]內的所有零點之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2 012名學生中選取50名學生參加數學競賽,若采用下面的方法選。合扔煤唵坞S機抽樣從2 012人中剔除12人,剩下的2 000人再按系統抽樣的方法抽取50人,則在2 012人中,每人入選的概率( )
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2﹣(2a+1)x+2lnx(a∈R)
(1)當a= 時,求函數f(x)的單調區間;
(2)設g(x)=(x2﹣2x)ex , 如果對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com