【題目】如圖,在以A,B,C,D,E,F為頂點的多面體中,四邊形ACDF是菱形,∠FAC=60°,AB∥DE,BC∥EF,AB=BC=3,AF=2 .
(1)求證:平面ABC⊥平面ACDF;
(2)求平面AEF與平面ACE所成的銳二面角的余弦值.
【答案】
(1)證明:設O是AC中點,連結OF、OB、FC,
在△ABC中,AB=BC,∴OB⊥AC,
∵四邊形ACDF是菱形,∠FAC=60°,
∴△FAC是等邊三角形,∴OF⊥AC,
∴∠FOB是二面角F﹣AC﹣B的平面角,
在Rt△FAO中,AF=2 ,AO=
AC=
AF=
,
∴OF= =
,
又∵BF= ,∴OF2+OB2=BF2,
∴∠FOB=90°,
∴平面ABC⊥平面ACDF.
(2)解:由(1)知OB、OC、OF兩兩垂直,以O為原點,OB為x軸,OC為y軸,OF為z軸,
建立空間直角坐標系,
則A(0,﹣ ,0),B(
,0,0),C(0,
,0),F(0,0,3),
=(0,
,3),
=(0,2
,0),
∵AB∥DE,AF∥CD,又AB平面CDE,AF平面CDE,
DE平面CDE,CD平面CDE,
∴AB∥平面CDE,AF∥平面CDE,
又AB∩AF=A,∴平面ABF∥平面CDE,
∵EF∥BC,∴B、C、E、F四點共面,
又平面ABF∩平面BCEF=BF,平面CDE∩平面BCEF=CE,
∴BF∥CE,∴四邊形BCEF是平行四邊形,
∴ =
=(﹣
,0),
∴ =(﹣
,3),
設平面AEF的法向量 =(x,y,z),
則 ,取x=
,得
=(
),
設平面ACE的法向量 =(a,b,c),
則 ,取a=
,得
=(
),
設平面AEF與平面ACE所成的銳二面角為θ,
則cosθ= =
.
∴平面AEF與平面ACE所成的銳二面角的余弦值為 .
【解析】(1)設O是AC中點,連結OF、OB、FC,推導出OB⊥AC,OF⊥AC,則∠FOB是二面角F﹣AC﹣B的平面角,由此能證明平面ABC⊥平面ACDF.(2)以O為原點,OB為x軸,OC為y軸,OF為z軸,建立空間直角坐標系,利用向量法能求出平面AEF與平面ACE所成的銳二面角的余弦值.
【考點精析】利用平面與平面垂直的判定對題目進行判斷即可得到答案,需要熟知一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ﹣k(
+lnx)(k為常數,e=2.71828…是自然對數的底數). (Ⅰ)當k≤0時,求函數f(x)的單調區間;
(Ⅱ)若函數f(x)在(0,2)內存在兩個極值點,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均不為0的等差數列{an}前n項和為Sn , 滿足S4=2a5 , a1a2=a4 , 數列{bn}滿足bn+1=2bn , b1=2.
(1)求數列{an},{bn}的通項公式;
(2)設cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,b>0,c>0,函數f(x)=|x+a|﹣|x﹣b|+c的最大值為10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此時a、b、c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax﹣1,g(x)=lnx﹣ax+a,若存在x0∈(1,2),使得f(x0)g(x0)<0,則實數a的取值范圍是( )
A.
B.(ln2,e﹣1)
C.[1,e﹣1)
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《九章算術》的論割圓術中有:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”它體現了一種無限與有限的轉化過程.比如在表達式1+ 中“”即代表無數次重復,但原式卻是個定值,它可以通過方程1+
=x求得x=
.類比上述過程,則
=( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinx﹣xcosx(x≥0).
(1)求函數f(x)的圖象在 處的切線方程;
(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求實數a的取值范圍;
(3)設m=f(x)dx,
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一個圓心角為直角的扇形AOB 花草房,半徑為1,點P 是花草房弧上一個動點,不含端點,現打算在扇形BOP 內種花,PQ⊥OA,垂足為Q,PQ 將扇形AOP 分成左右兩部分,在PQ 左側部分三角形POQ 為觀賞區,在PQ 右側部分種草,已知種花的單位面積的造價為3a,種草的單位面積的造價為2a,其中a 為正常數,設∠AOP=θ,種花的造價與種草的造價的和稱為總造價,不計觀賞區的造價,設總造價為f(θ)
(1)求f(θ)關于θ 的函數關系式;
(2)求當θ 為何值時,總造價最小,并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在以點C為圓心,且與直線BD相切的圓內運動,設 (α,β∈R),則α+β的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com