精英家教網 > 高中數學 > 題目詳情

【題目】某大學進行自主招生測試,需要對邏輯思維和閱讀表達進行能力測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如圖所示,下列敘述正確的是(

A.甲同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

B.乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

C.甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前

D.甲同學的總成績排名比丙同學的總成績排名更靠前

【答案】AC

【解析】

根據圖中的信息可以知道:可得甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前,他的閱讀表達成績排名靠后,對此進行選擇即可.

根據圖示,可得甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前, 他的閱讀表達成績排名靠后.

故選:AC.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點,橢圓的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點. 設過點的動直線相交于兩點.

1)求的方程;

2)是否存在這樣的直線,使得的面積為,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某產品自生產并投入市場以來,生產企業為確保產品質量,決定邀請第三方檢測機構對產品進行質量檢測,并依據質量指標來衡量產品的質量.當時,產品為優等品;當時,產品為一等品;當時,產品為二等品.第三方檢測機構在該產品中隨機抽取500件,繪制了這500件產品的質量指標的條形圖.用隨機抽取的500件產品作為樣本,估計該企業生產該產品的質量情況,并用頻率估計概率.

(1)從該企業生產的所有產品中隨機抽取1件,求該產品為優等品的概率;

(2)現某人決定購買80件該產品.已知每件成本1000元,購買前,邀請第三方檢測機構對要購買的80件產品進行抽樣檢測.買家、企業及第三方檢測機構就檢測方案達成以下協議:從80件產品中隨機抽出4件產品進行檢測,若檢測出3件或4件為優等品,則按每件1600元購買,否則按每件1500元購買,每件產品的檢測費用250元由企業承擔.記企業的收益為元,求的分布列與數學期望;

(3)商場為推廣此款產品,現面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據拋硬幣的結果,操控機器人在方格上行進,已知硬幣出現正、反面的概率都是,方格圖上標有第0格、第1格、第2格、……、第50格.機器人開始在第0格,客戶每擲一次硬幣,機器人向前移動一次,若擲出正面,機器人向前移動一格(從),若擲出反面,機器人向前移動兩格(從),直到機器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結束,若機器人停在“勝利大本營”,則可獲得優惠券.設機器人移到第格的概率為,試證明是等比數列,并解釋此方案能否吸引顧客購買該款產品.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,點上.

(1) 求橢圓的方程;

(2) 分別是橢圓的上、下焦點,過的直線與橢圓交于不同的兩點,求的內切圓的半徑的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以雙曲線上一點為圓心作圓,該圓與軸相切于的一個焦點,與軸交于兩點,若,則雙曲線的離心率________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解居民的家庭收入情況,某社區組織工作人員從該社區的居民中隨機抽取了戶家庭進行問卷調查,經調查發現,這些家庭的月收人在元到元之間,根據統計數據作出:

1)經統計發現,該社區居民的家庭月收人(單位:百元)近似地服從正態分布,其中近似為樣本平均數.落在區間的左側,則可認為該家庭屬收入較低家庭" ,社區將聯系該家庭,咨詢收入過低的原因,并采取相應措施為該家庭提供創收途徑.若該社區家庭月收入為元,試判斷家庭是否屬于收人較低家庭”,并說明原因;

2)將樣本的頻率視為總體的概率

①從該社區所有家庭中隨機抽取戶家庭,若這戶家庭月收人均低于元的概率不小于,的最大值;

②在①的條件下,某生活超市贊助了該社區的這次調查活動,并為這次參與調在的家庭制定了贈送購物卡的活動,贈送方式為:家庭月收入低于的獲贈兩次隨機購物卡,家庭月收入不低于的獲贈一次隨機購物卡;每次贈送的購物卡金額及對應的概率分別為:

贈送購物卡金額(單位:)

概率

家庭預期獲得的購物卡金額為多少元?(結果保留整數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規則是:每人按先AB的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為,且在A,B兩點投中與否相互獨立.

(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率

(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規則投籃兩次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,其中.

(1)討論的奇偶性;

(2)時,求證:的最小正周期是;

(3),當函數的圖像與的圖像有交點時,求滿足條件的的個數,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐PABC中,△PAC為等腰直角三角形,為正三角形,DA的中點,AC=2

(1)證明:PBAC;

(2)若三棱錐的體積為,求二面角APCB的余弦值

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视