【題目】如圖,在三棱錐P—ABC中,△PAC為等腰直角三角形,為正三角形,D為A的中點,AC=2.
(1)證明:PB⊥AC;
(2)若三棱錐的體積為
,求二面角A—PC—B的余弦值
科目:高中數學 來源: 題型:
【題目】某大學進行自主招生測試,需要對邏輯思維和閱讀表達進行能力測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如圖所示,下列敘述正確的是( )
A.甲同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前
B.乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前
C.甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前
D.甲同學的總成績排名比丙同學的總成績排名更靠前
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為:,(t為參數).在以坐標原點0為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ2﹣4ρcosθ﹣4ρsinθ+4=0.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設直線l與曲線C交于A,B兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司進行共享單車的投放與損耗統計,到去年年底單車的市場保有量(已投入市場且能正常使用的單車數量)為
輛,預計今后每年新增單車1000輛,隨著單車的頻繁使用,估計每年將有200輛車的損耗,并且今后若干年內,年平均損耗在上一年損耗基礎上增加
%.
(1)預計年底單車的市場保有量是多少?
(2)到哪一年底,市場的單車保有量達到最多?該年的單車保有量是多少輛(最后結果精確到整數)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
,其中m是不等于零的常數.
(1)時,直接寫出
的值域;
(2)求的單調遞增區間;
(3)已知函數,
,定義:
,
,
,
,其中,
表示函數
在
上的最小值,
表示函數
在
上的最大值.例如:
,
,則
,
,
,
.當
時,
恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,若在定義域內存在
,使得
成立,則稱
為函數
的局部對稱點.
(1)若、
且
,證明:函數
必有局部對稱點;
(2)若函數在區間
內有局部對稱點,求實數
的取值范圍;
(3)若函數在
上有局部對稱點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現稱為分形,一個數學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統.分形幾何學不僅讓人們感悟到科學與藝木的融合,數學與藝術審美的統一,而且還有其深刻的科學方法論意義.如圖,由波蘭數學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.
若在圖④中隨機選取-點,則此點取自陰影部分的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(其中
為參數),曲線
的參數方程為
(其中
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線、
的極坐標方程;
(2)射線:
與曲線
,
分別交于點
,
(且點
,
均異于原點
),當
時,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com