精英家教網 > 高中數學 > 題目詳情

【題目】已知直線l的參數方程為:,(t為參數).在以坐標原點0為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ24ρcosθ4ρsinθ+40

(1)求直線l的普通方程和曲線C的直角坐標方程;

(2)設直線l與曲線C交于A,B兩點,求的值.

【答案】(1);(2)

【解析】

(1)利用參數方程與極坐標的方法化簡求解即可.

(2)將直線的參數方程化為,再聯立圓的直角坐標方程,利用直線參數方程中參數的幾何意義表達再計算即可.

(1)由,(t為參數),消去參數t可得:

∴直線l的普通方程為

由ρ2﹣4ρcosθ﹣4ρsinθ+4=0,得x2+y2﹣4x﹣4y+4=0.

∴曲線C的直角坐標方程為x2+y2﹣4x﹣4y+4=0;

(2)直線l的參數方程化為,代入x2+y2﹣4x﹣4y+4=0.

整理得:

AB所對應的參數分別為t1,t2

,t1t2=4.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某產品自生產并投入市場以來,生產企業為確保產品質量,決定邀請第三方檢測機構對產品進行質量檢測,并依據質量指標來衡量產品的質量.當時,產品為優等品;當時,產品為一等品;當時,產品為二等品.第三方檢測機構在該產品中隨機抽取500件,繪制了這500件產品的質量指標的條形圖.用隨機抽取的500件產品作為樣本,估計該企業生產該產品的質量情況,并用頻率估計概率.

(1)從該企業生產的所有產品中隨機抽取1件,求該產品為優等品的概率;

(2)現某人決定購買80件該產品.已知每件成本1000元,購買前,邀請第三方檢測機構對要購買的80件產品進行抽樣檢測.買家、企業及第三方檢測機構就檢測方案達成以下協議:從80件產品中隨機抽出4件產品進行檢測,若檢測出3件或4件為優等品,則按每件1600元購買,否則按每件1500元購買,每件產品的檢測費用250元由企業承擔.記企業的收益為元,求的分布列與數學期望;

(3)商場為推廣此款產品,現面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據拋硬幣的結果,操控機器人在方格上行進,已知硬幣出現正、反面的概率都是,方格圖上標有第0格、第1格、第2格、……、第50格.機器人開始在第0格,客戶每擲一次硬幣,機器人向前移動一次,若擲出正面,機器人向前移動一格(從),若擲出反面,機器人向前移動兩格(從),直到機器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結束,若機器人停在“勝利大本營”,則可獲得優惠券.設機器人移到第格的概率為,試證明是等比數列,并解釋此方案能否吸引顧客購買該款產品.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規則是:每人按先AB的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為,且在AB兩點投中與否相互獨立.

(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率

(2)若教師乙與教師甲在AB投中的概率相同,兩人按規則投籃兩次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,其中.

(1)討論的奇偶性;

(2)時,求證:的最小正周期是;

(3),當函數的圖像與的圖像有交點時,求滿足條件的的個數,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的極坐標方程,并求出曲線公共弦所在直線的極坐標方程;

2)若射線與曲線交于兩點,與曲線交于點,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.

1)求球的表面積;

2)證明:平面平面,且平面平面.

3)與側面平行的平面與棱,分別交于,,求四面體的體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐PABC中,△PAC為等腰直角三角形,為正三角形,DA的中點,AC=2

(1)證明:PBAC;

(2)若三棱錐的體積為,求二面角APCB的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列,滿足:

1)若,求數列的通項公式;

2)若,且

,求證:數列為等差數列;

若數列中任意一項的值均未在該數列中重復出現無數次,求首項應滿足的條件.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视