【題目】已知函數f(x)=x+ 的圖象過點P(1,5). (Ⅰ)求實數m的值,并證明函數f(x)是奇函數;
(Ⅱ)利用單調性定義證明f(x)在區間[2,+∞)上是增函數.
【答案】解:(Ⅰ) 的圖象過點P(1,5), ∴5=1+m,
∴m=4
∴ ,f(x)的定義域為{x|x≠0},關于原點對稱,
∴f(x)=﹣f(x),
f(x)是奇函數.
(Ⅱ)證明:設x2>x1≥2,
則
又x2﹣x1>0,x1≥2,x2>2,∴x1x2>4
∴f(x2)﹣f(x1)>0,
∴f(x2)>f(x1),
即f(x)在區間[2,+∞)上是增函數
【解析】(Ⅰ)代入點P,求得m,再由奇函數的定義,即可得證;(Ⅱ)根據單調性的定義,設值、作差、變形、定符號和下結論即可得證.
【考點精析】利用函數單調性的判斷方法和函數的奇偶性對題目進行判斷即可得到答案,需要熟知單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
科目:高中數學 來源: 題型:
【題目】若圓的一條直徑的兩個端點分別是(﹣1,3)和(5,﹣5),則此圓的方程是( )
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線,
,則下列說法正確的是( )
A. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線
B. 把上各點橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線
C. 把曲線向右平移
個單位長度,再把得到的曲線上各點橫坐標縮短到原來的
,縱坐標不變,得到曲線
D. 把曲線向右平移
個單位長度,再把得到的曲線上各點橫坐標縮短到原來的
,縱坐標不變,得到曲線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設向量 =(cosθ,sinθ),
=(﹣
,
);
(1)若 ∥
,且θ∈(0,π),求θ;
(2)若|3 +
|=|
﹣3
|,求|
+
|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是矩形,側面PAD丄底面ABCD,∠APD= . (I )求證:平面PAB丄平面PCD;
(II)如果AB=BC,PB=PC,求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com