1.等差數列的任意連續項的和構成的數列仍為等差數列. 查看更多

 

題目列表(包括答案和解析)

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.

(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;

(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;

(Ⅲ)根據“保三角形函數”的定義,對函數,和數列1,,,()提出一個正確的命題,并說明理由.

 

查看答案和解析>>

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.

(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;

(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;

(Ⅲ)根據“保三角形函數”的定義,對函數,和數列1,,,()提出一個正確的命題,并說明理由.

 

 

查看答案和解析>>

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.
(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;
(Ⅲ)根據“保三角形函數”的定義,對函數,,和數列1,,,()提出一個正確的命題,并說明理由.

查看答案和解析>>

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.

 (1)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;

(2)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;

(3) 若是(2)中數列的“保三角形函數”,問數列最多有多少項.

查看答案和解析>>

定義:如果數列的任意連續三項均能構成一個三角形的三邊長,則稱為“三角形”數列.對于“三角形”數列,如果函數使得仍為一個“三角形”數列,則稱是數列的“保三角形函數”,.
(Ⅰ)已知是首項為2,公差為1的等差數列,若是數列的“保三角形函數”,求k的取值范圍;
(Ⅱ)已知數列的首項為2010,是數列的前n項和,且滿足,證明是“三角形”數列;
(Ⅲ)根據“保三角形函數”的定義,對函數,,和數列1,,,()提出一個正確的命題,并說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视