題目列表(包括答案和解析)
已知過點的動直線
與拋物線
相交于
兩點.當直線
的斜率是
時,
.
(1)求拋物線的方程;
(2)設線段的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B,C
,當直線
的斜率是
時,
的方程為
,即
(1’)
聯立 得
,
(3’)
由已知 ,
(4’)
由韋達定理可得G方程為
(5’)
(2)設:
,BC中點坐標為
(6’)
得
由
得
(8’)
BC中垂線為 (10’)
(11’)
已知函數y=x²-3x+c的圖像與x恰有兩個公共點,則c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函數的圖象與
軸恰有兩個公共點,則說明函數的兩個極值中有一個為0,函數的導數為
,令
,解得
,可知當極大值為
,極小值為
.由
,解得
,由
,解得
,所以
或
,選A.
如圖,已知直線與
軸、
軸分別交于
,拋物線
經過點
,點
是拋物線與
軸的另一個交點。
(1)求拋物線的解析式;
(2)若點P在直線BC上,且,求P點坐標。
已知函數的圖像上兩相鄰最高點的坐標分別為
和
.(Ⅰ)求
與
的值;(Ⅱ)在
中,
分別是角
的對邊,且
求
的取值范圍.
【解析】本試題主要考查了三角函數的圖像與性質的綜合運用。
第一問中,利用所以由題意知:
,
;第二問中,
,即
,又
,
則,解得
,
所以
結合正弦定理和三角函數值域得到。
解:(Ⅰ),
所以由題意知:,
;
(Ⅱ),即
,又
,
則,解得
,
所以
因為,所以
,所以
解不等式:
【解析】本試題主要是考查了分段函數與絕對值不等式的綜合運用。利用零點分段論 的思想,分為三種情況韜略得到解集即可。也可以利用分段函數圖像來解得。
解:方法一:零點分段討論: 方法二:數形結合法:
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com