1.下列在廚房中發生的變化是物理變化的是
A.榨取果汁 B.冬瓜腐爛 C.鐵鍋生銹 D.煤氣燃燒
29.問題解決
解:方法一:如圖(1-1),連接.
由題設,得四邊形和四邊形
關于直線
對稱.
∴垂直平分
.∴
··········································· 1分
∵四邊形是正方形,∴
∵設
則
在中,
.
∴解得
,即
················································ 3分
在和在
中,
,
,
······································································· 5分
設則
∴
解得即
················································································· 6分
∴··································································································· 7分
方法二:同方法一,········································································· 3分
如圖(1-2),過點做
交
于點
,連接
∵∴四邊形
是平行四邊形.
∴
同理,四邊形也是平行四邊形.∴
∵
在與
中
∴
····························· 5分
∵······························································ 6分
∴································································································· 7分
類比歸納
(或
);
;
·········································································· 10分
聯系拓廣
···································································································· 12分
26.(1)解:由得
點坐標為
由得
點坐標為
∴··················································································· (2分)
由解得
∴
點的坐標為
···································· (3分)
∴··························································· (4分)
(2)解:∵點在
上且
∴點坐標為
······················································································ (5分)
又∵點在
上且
∴點坐標為
······················································································ (6分)
∴··········································································· (7分)
(3)解法一:當
時,如圖1,矩形
與
重疊部分為五邊形
(
時,為四邊形
).過
作
于
,則
∴即
∴
∴
即··································································· (10分)
(2009年山西省太原市)29.(本小題滿分12分)
問題解決
如圖(1),將正方形紙片折疊,使點
落在
邊上一點
(不與點
,
重合),壓平后得到折痕
.當
時,求
的值.
類比歸納
在圖(1)中,若則
的值等于 ;若
則
的值等于 ;若
(
為整數),則
的值等于 .(用含
的式子表示)
聯系拓廣
如圖(2),將矩形紙片折疊,使點
落在
邊上一點
(不與點
重合),壓平后得到折痕
設
則
的值等于 .(用含
的式子表示)
26.(2009年山西省)(本題14分)如圖,已知直線與直線
相交于點
分別交
軸于
兩點.矩形
的頂點
分別在直線
上,頂點
都在
軸上,且點
與點
重合.
(1)求的面積;
(2)求矩形的邊
與
的長;
(3)若矩形從原點出發,沿
軸的反方向以每秒1個單位長度的速度平移,設
移動時間為秒,矩形
與
重疊部分的面積為
,求
關
的函數關系式,并寫出相應的
的取值范圍.
23.(2009年河南省)(11分)如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發.沿線段AB向終點B運動,同時點Q從點C出發,沿線段CD
向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?
請直接寫出相應的t值.
解.(1)點A的坐標為(4,8) …………………1分
將A (4,8)、C(8,0)兩點坐標分別代入y=ax2+bx
8=16a+4b
得
0=64a+8b
解 得a=-,b=4
∴拋物線的解析式為:y=-x2+4x
…………………3分
(2)①在Rt△APE和Rt△ABC中,tan∠PAE==
,即
=
∴PE=AP=
t.PB=8-t.
∴點E的坐標為(4+t,8-t).
∴點G的縱坐標為:-(4+
t)2+4(4+
t)=-
t2+8. …………………5分
∴EG=-t2+8-(8-t)
=-t2+t.
∵-<0,∴當t=4時,線段EG最長為2.
…………………7分
②共有三個時刻. …………………8分
t1=, t2=
,t3=
.
…………………11分
26.解:(1)1,
;
(2)作QF⊥AC于點F,如圖3, AQ = CP= t,∴.
由△AQF∽△ABC,,
得.∴
.
∴
,
即.
(3)能.
①當DE∥QB時,如圖4.
∵DE⊥PQ,∴PQ⊥QB,四邊形QBED是直角梯形.
此時∠AQP=90°.
由△APQ ∽△ABC,得
,
即. 解得
.
②如圖5,當PQ∥BC時,DE⊥BC,四邊形QBED是直角梯形.
此時∠APQ =90°.
由△AQP ∽△ABC,得 ,
即. 解得
.
(4)或
.
[注:①點P由C向A運動,DE經過點C.
方法一、連接QC,作QG⊥BC于點G,如圖6.
,
.
由,得
,解得
.
方法二、由,得
,進而可得
,得
,∴
.∴
.
②點P由A向C運動,DE經過點C,如圖7.
,
]
26.(2009年河北省)(本小題滿分12分)
如圖16,在Rt△ABC中,∠C=90°,AC = 3,AB
= 5.點P從點C出發沿CA以每秒1個單位長的速度向點A勻速運動,到達點A后立刻以原來的速度沿AC返回;點Q從點A出發沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BC-CP于點E.點P、Q同時出發,當點Q到達點B時停止運動,點P也隨之停止.設點P、Q運動的時間是t秒(t>0).
(1)當t = 2時,AP = ,點Q到AC的距離是 ;
(2)在點P從C向A運動的過程中,求△APQ的面積S與
t的函數關系式;(不必寫出t的取值范圍)
(3)在點E從B向C運動的過程中,四邊形QBED能否成
為直角梯形?若能,求t的值.若不能,請說明理由;
(4)當DE經過點C 時,請直接寫出t的值.
26.解:(1)由已知,得,
,
,
.
.············································································································ (1分)
設過點的拋物線的解析式為
.
將點的坐標代入,得
.
將和點
的坐標分別代入,得
··································································································· (2分)
解這個方程組,得
故拋物線的解析式為.··························································· (3分)
(2)成立.························································································· (4分)
點
在該拋物線上,且它的橫坐標為
,
點
的縱坐標為
.······················································································· (5分)
設的解析式為
,
將點的坐標分別代入,得
解得
的解析式為
.········································································ (6分)
,
.··························································································· (7分)
過點作
于點
,
則.
,
.
又,
.
.
.··········································································································· (8分)
.
(3)點
在
上,
,
,則設
.
,
,
.
①若,則
,
解得.
,此時點
與點
重合.
.··········································································································· (9分)
②若,則
,
解得 ,
,此時
軸.
與該拋物線在第一象限內的交點
的橫坐標為1,
點
的縱坐標為
.
.······································································································· (10分)
③若,則
,
解得,
,此時
,
是等腰直角三角形.
過點
作
軸于點
,
則,設
,
.
.
解得(舍去).
.··········································· (12分)
綜上所述,存在三個滿足條件的點,
即或
或
.
(2009年重慶綦江縣)26.(11分)如圖,已知拋物線經過點
,拋物線的頂點為
,過
作射線
.過頂點
平行于
軸的直線交射線
于點
,
在
軸正半軸上,連結
.
(1)求該拋物線的解析式;
(2)若動點從點
出發,以每秒1個長度單位的速度沿射線
運動,設點
運動的時間為
.問當
為何值時,四邊形
分別為平行四邊形?直角梯形?等腰梯形?
(3)若
,動點
和動點
分別從點
和點
同時出發,分別以每秒1個長度單位和2個長度單位的速度沿
和
運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為
,連接
,當
為何值時,四邊形
的面積最?并求出最小值及此時
的長.
*26.解:(1)拋物線
經過點
,
·························································································· 1分
二次函數的解析式為:
·················································· 3分
(2)為拋物線的頂點
過
作
于
,則
,
··················································· 4分
當
時,四邊形
是平行四邊形
················································ 5分
當
時,四邊形
是直角梯形
過作
于
,
則
(如果沒求出可由
求
)
····························································································· 6分
當
時,四邊形
是等腰梯形
綜上所述:當、5、4時,對應四邊形分別是平行四邊形、直角梯形、等腰梯形.·· 7分
(3)由(2)及已知,是等邊三角形
則
過作
于
,則
········································································· 8分
=·································································································· 9分
當時,
的面積最小值為
··································································· 10分
此時
······················································ 11分
26.(2009年重慶市)已知:如圖,在平面直角坐標系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.
(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構成的△PCG是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
25.(2009年北京)如圖,在平面直角坐標系中,
三個機戰的坐標分別為
,
,
,延長AC到點D,使CD=
,過點D作DE∥AB交BC的延長線于點E.
(1)求D點的坐標;
(2)作C點關于直線DE的對稱點F,分別連結DF、EF,若過B點的直線
將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;
(3)設G為y軸上一點,點P從直線與y軸的交點出發,先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短。(要求:簡述確定G點位置的方法,但不要求證明)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com